Êíèãà | Ñòðàíèöû äëÿ ïîèñêà |
Weintraub S. — Differential Forms. A complement to vector calculus | |
Wolff P. — Breakthroughs in mathematics | 215—217 |
Oprea J. — Differential Geometry and Its Applications | 67—68 |
Felsager B. — Geometry, particles and fields | 346 |
Cameron P.J. — Combinatorics : Topics, Techniques, Algorithms | 302 |
Behnke H., Bachmann F., Fladt K. — Fundamentals of Mathematics, Volume III: Analysis | 262 |
Behnke H., Bachmann F., Fladt K. — Fundamentals of Mathematics, Volume II: Geometry | 263, 598, 600—601, 603—604, 627 |
Diestel R. — Graph theory | 362 |
Mendelson B. — Introduction to Topology | 199 |
Braselton J.P. — Maple by Example | 409 |
Sagan H. — Advanced Calculus of Real-Valued Functions of a Real Variable and Vector-Valued Functions of a Vector Variable | 508, 557 |
Reid M., Szendroi B. — Geometry and Topology | xiv, 107, 118—119, 122, 139 |
Aczel A.D. — Descartes' Secret Notebook: A True Tale of Mathematics, Mysticism, and the Quest to Understand the Universe | 256n |
Montiel S., Ros A. — Curves and Surfaces | 71, 74 |
McMano D., Topa D.M. — A Beginner's Guide to Mathematica | 611, 686—687 |
Weickert J. — Visualization and Processing of Tensor Fields: Proceedings of the Dagstuhl Workshop | 197 |
Duistermaat J.J., Kolk J.A.C. — Multidimensional Real Analysis II: Integration | 564 |
Brickell F., Clark R.S. — Differentiable Manifolds | 107 |
Ito K. — Encyclopedic Dictionary of Mathematics | 410.B |
National Council of Teachers of Mathematics — Historical Topics for the Mathematics Classroom Thirty-First Yearbook | 187 |
Schroeder M.R. — Schroeder, Self Similarity: Chaos, Fractals, Power Laws | 24 |
Carmo M.P. — Differential geometry of curves and surfaces | 106 |
Thirring W.E. — Classical Mathematical Physics: Dynamical Systems and Field Theories | 29 |
Thirring W.E. — Course in Mathematical Physics: Classical Dynamical System, Vol. 1 by Walter E. Thirring | 27 |
Spivak M. — A Comprehensive Introduction to Differential Geometry (Vol.1) | 10 |
Guggenheimer H.W. — Differential Geometry | 205 |
Seppala M. — Geometry of Riemann surfaces and Teichmuller spaces | 72 |
Visser M. — Lorentzian wormholes. From Einstein to Hawking | 219, 289—290 |
Zieschang H. — Surfaces and Planar Discontinuous Groups | 72 |
Audin M. — Torus Actions on Symplectic Manifolds | 20, 25 |
Kreyszig E. — Advanced engineering mathematics | 453, 456 |
Bertlmann R.A. — Anomalies in Quantum Field Theory | 101—102 |
Feynman R.P. — What do you care what other people think? | 16—17 |
Ore O. — Pure and applied mathematics. Volume 27. The problem four-color | 154 |
Baez J.C., Muniain J.P. — Gauge theories, knots, and gravity | 84, 202, 203, 212 |
Efimov A.V. — Mathematical analysis: advanced topics. Part 2. Application of some methods of mathematical and functional analysis | 13 |
Browder A. — Mathematical Analysis: An Introduction | 258, 267, 319 |
Cairns S.S. — Introductory topology | 25 |
Peter Wolff — Breakthroughs in mathematics | 215—17 |
Brickell F., Clark R.S. — Differentiable manifolds | 107 |
Hayes D.F. (ed.), Shubin T. (ed.) — Mathematical Adventures for Students and Amateurs | 214, 266 |
Massey W.S. — A basic course in algebraic topology | 3—4 |
Weeks J.R. — The shape of space | 47—49, 125—126 |
Audin M. — Geometry | 180 |
Audin M. — Geometry | 180 |
Massey W.S. — Algebraic Topology: an introduction | 3—4 |
Penney D.E. — Perspectives in Mathematics | 50, 117 |
Courant R. — Dirichlet's Principle, Confomal Mapping and Minimal Surfaces | 142 |
Gierz G. — Bundles of Topological Vector Spaces and Their Duality | 55 |
Behnke H., Bachmann F., Fladt K. — Fundamentals of mathematics. Volume III. Analysis | 262 |
Blum E.K., Lototsky S.V. — Mathematics of Physics and Engineering | 136 |
Wrede R.C., Spiegel M. — Theory and problems of advanced calculus | 248 |
Wald R.M. — General Relativity | 363 |
Derbyshire J. — Prime Obsession: Bernhard Riemann and the greatest unsolved problem in mathematics | 381—382 |
Arnold V.I. — Ordinary Differential Equations | 246 |
Courant R., Robbins H. — What Is Mathematics?: An Elementary Approach to Ideas and Methods | 259—262 |
Gullberg J. — Mathematics: from the birth of numbers | 380, 204 |
Polchinski J. — String theory (volume 2). Superstring theory and beyond | 39, 41—42, 135 |
Spivak M. — Calculus on Manifolds: A Modern Approach to Classical Theorems of Advanced Calculus | 119, 120, 130 |
Nikolsky S.M. — A Course of Mathematical Analysis (Vol. 2) | 296 |
Lord E., Wilson C. — The Mathematical Description of Shape and Form (Mathematics and Its Applications) | 39 |
Bonahon F. — Low-Dimensional Geometry: From Euclidean Surfaces to Hyperbolic Knots (Student Mathematical Library: Ias Park City Mathematical Subseries) | 341 |
Synge J. L. — Tensor Calculus | 261 |
Azcarraga J., Izquierdo J. — Lie groups, Lie algebras, cohomology and some applications in physics | 27 |
Thirring W., Harrell E.M. — Classical mathematical physics. Dynamical systems and field theory | 29 |
Odifreddi P., Sangalli A., Dyson F. — The Mathematical Century: The 30 Greatest Problems of the Last 100 Years | 78, 173 |
Nash C., Sen S. — Topology and geometry for physicists | 34—35, 137, 141—148, 152—156 |
Eves H. — Mathematical Circles Adieu | 342 |