Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
Ìåõìàòÿíàì
square Ïåðâûé êóðñ

square Âòîðîé êóðñ

square Òðåòèé êóðñ

square ×åòâåðòûé êóðñ

square Ïÿòûé êóðñ
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
Êðàñîòà
blank
blank
Ðåçóëüòàò ïîèñêà

Ïîèñê êíèã, ñîäåðæàùèõ: Moebius strip



ÊíèãàÑòðàíèöû äëÿ ïîèñêà
Weintraub S. — Differential Forms. A complement to vector calculus
Wolff P. — Breakthroughs in mathematics215—217
Oprea J. — Differential Geometry and Its Applications67—68
Felsager B. — Geometry, particles and fields346
Cameron P.J. — Combinatorics : Topics, Techniques, Algorithms302
Behnke H., Bachmann F., Fladt K. — Fundamentals of Mathematics, Volume III: Analysis262
Behnke H., Bachmann F., Fladt K. — Fundamentals of Mathematics, Volume II: Geometry263, 598, 600—601, 603—604, 627
Diestel R. — Graph theory362
Mendelson B. — Introduction to Topology199
Braselton J.P. — Maple by Example409
Sagan H. — Advanced Calculus of Real-Valued Functions of a Real Variable and Vector-Valued Functions of a Vector Variable508, 557
Reid M., Szendroi B. — Geometry and Topologyxiv, 107, 118—119, 122, 139
Aczel A.D. — Descartes' Secret Notebook: A True Tale of Mathematics, Mysticism, and the Quest to Understand the Universe256n
Montiel S., Ros A. — Curves and Surfaces71, 74
McMano D., Topa D.M. — A Beginner's Guide to Mathematica611, 686—687
Weickert J. — Visualization and Processing of Tensor Fields: Proceedings of the Dagstuhl Workshop197
Duistermaat J.J., Kolk J.A.C. — Multidimensional Real Analysis II: Integration564
Brickell F., Clark R.S. — Differentiable Manifolds107
Ito K. — Encyclopedic Dictionary of Mathematics410.B
National Council of Teachers of Mathematics — Historical Topics for the Mathematics Classroom Thirty-First Yearbook187
Schroeder M.R. — Schroeder, Self Similarity: Chaos, Fractals, Power Laws24
Carmo M.P. — Differential geometry of curves and surfaces106
Thirring W.E. — Classical Mathematical Physics: Dynamical Systems and Field Theories29
Thirring W.E. — Course in Mathematical Physics: Classical Dynamical System, Vol. 1 by Walter E. Thirring27
Spivak M. — A Comprehensive Introduction to Differential Geometry (Vol.1)10
Guggenheimer H.W. — Differential Geometry205
Seppala M. — Geometry of Riemann surfaces and Teichmuller spaces72
Visser M. — Lorentzian wormholes. From Einstein to Hawking219, 289—290
Zieschang H. — Surfaces and Planar Discontinuous Groups72
Audin M. — Torus Actions on Symplectic Manifolds20, 25
Kreyszig E. — Advanced engineering mathematics453, 456
Bertlmann R.A. — Anomalies in Quantum Field Theory101—102
Feynman R.P. — What do you care what other people think?16—17
Ore O. — Pure and applied mathematics. Volume 27. The problem four-color154
Baez J.C., Muniain J.P. — Gauge theories, knots, and gravity84, 202, 203, 212
Efimov A.V. — Mathematical analysis: advanced topics. Part 2. Application of some methods of mathematical and functional analysis13
Browder A. — Mathematical Analysis: An Introduction258, 267, 319
Cairns S.S. — Introductory topology25
Peter Wolff — Breakthroughs in mathematics215—17
Brickell F., Clark R.S. — Differentiable manifolds107
Hayes D.F. (ed.), Shubin T. (ed.) — Mathematical Adventures for Students and Amateurs214, 266
Massey W.S. — A basic course in algebraic topology3—4
Weeks J.R. — The shape of space47—49, 125—126
Audin M. — Geometry180
Audin M. — Geometry180
Massey W.S. — Algebraic Topology: an introduction3—4
Penney D.E. — Perspectives in Mathematics50, 117
Courant R. — Dirichlet's Principle, Confomal Mapping and Minimal Surfaces142
Gierz G. — Bundles of Topological Vector Spaces and Their Duality55
Behnke H., Bachmann F., Fladt K. — Fundamentals of mathematics. Volume III. Analysis262
Blum E.K., Lototsky S.V. — Mathematics of Physics and Engineering136
Wrede R.C., Spiegel M. — Theory and problems of advanced calculus248
Wald R.M. — General Relativity363
Derbyshire J. — Prime Obsession: Bernhard Riemann and the greatest unsolved problem in mathematics381—382
Arnold V.I. — Ordinary Differential Equations246
Courant R., Robbins H. — What Is Mathematics?: An Elementary Approach to Ideas and Methods259—262
Gullberg J. — Mathematics: from the birth of numbers380, 204
Polchinski J. — String theory (volume 2). Superstring theory and beyond39, 41—42, 135
Spivak M. — Calculus on Manifolds: A Modern Approach to Classical Theorems of Advanced Calculus119, 120, 130
Nikolsky S.M. — A Course of Mathematical Analysis (Vol. 2)296
Lord E., Wilson C. — The Mathematical Description of Shape and Form (Mathematics and Its Applications)39
Bonahon F. — Low-Dimensional Geometry: From Euclidean Surfaces to Hyperbolic Knots (Student Mathematical Library: Ias Park City Mathematical Subseries)341
Synge J. L. — Tensor Calculus261
Azcarraga J., Izquierdo J. — Lie groups, Lie algebras, cohomology and some applications in physics27
Thirring W., Harrell E.M. — Classical mathematical physics. Dynamical systems and field theory29
Odifreddi P., Sangalli A., Dyson F. — The Mathematical Century: The 30 Greatest Problems of the Last 100 Years78, 173
Nash C., Sen S. — Topology and geometry for physicists34—35, 137, 141—148, 152—156
Eves H. — Mathematical Circles Adieu342
blank
HR
@Mail.ru
© Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2025
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01!| Valid CSS! Î ïðîåêòå