Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
Ìåõìàòÿíàì
square Ïåðâûé êóðñ

square Âòîðîé êóðñ

square Òðåòèé êóðñ

square ×åòâåðòûé êóðñ

square Ïÿòûé êóðñ
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
Êðàñîòà
blank
blank
Ðåçóëüòàò ïîèñêà

Ïîèñê êíèã, ñîäåðæàùèõ: Line integral



ÊíèãàÑòðàíèöû äëÿ ïîèñêà
Weintraub S. — Differential Forms. A complement to vector calculus
Guillemin V., Pollack A. — Differential topology169, 172
Nevanlinna R., Paatero V. — Introduction to Complex Analysis108—113
Rudin W. — Principles of Mathematical Analysis255
Keisler H.J. — Elementary calculus795
Morse P., Feshbach H. — Methods of Theoretical Physics (part 1)17 (see also “Integration in complex plane”)
Morse P., Feshbach H. — Methods of Theoretical Physics (part 2)17 (see also “Integration in complex plane”)
Borisenko A.I., Tarapov I.E. — Vector and Tensor Analysis with Applications136
Mauch S. — Introduction to Methods of Applied Mathematics or Advanced Mathematical Methods for Scientists and Engineers280
Silverman J.H. — The arithmetic of elliptic curves146, 147; see also Elliptic integral
Conway J.B. — Functions of One Complex Variable63
Lee J.M. — Introduction to Smooth Manifolds78, 79
Millman R.S., Parker G.D. — Elements of Differential Geometry50
Widder D.V. — Advanced calculussee Integral
Weinstock R. — Calculus of variations with applications to physics & engineering6, 7
Smirnov V.I. — Higher mathematics. Vol.2205—210
Ahlfors L.V. — Complex analysis101—109
Williamson R.E., Crowell R.H., Trotter H.F. — Calculus of vector functions130
Polya G., Latta G. — Complex Variables147
Sagan H. — Advanced Calculus of Real-Valued Functions of a Real Variable and Vector-Valued Functions of a Vector Variable526
Coffin D. — Calculus on the HP-48G/GX271—274, 276—277
Ablowitz M.J., Fokas A.S. — Complex Variables: Introduction and Applications72, 74
Weatherburn C. — Advanced Vector Analysis13, 86
Boothby W.M. — An introduction to differentiable manifolds and riemannian geometry264
Shankar R. — Basic Training In Mathematics159
Greiner W. — Classical mechanics. Point particles and relativity109
Schey H.M. — DIV, Grad, Curl, and All That: An Informal Text on Vector Calculus63—72
Ayres F.J., Mendelson E. — Schaum's Outline of Calculus427
Menzel D.H. — Mathematical Physics35
Perry J. — The Calculus for Engineers69, 134
Schercliff J.A. — Vector Fields33, 62, 88, 95, 130, 272
Greenberg M.D. — Advanced engineering mathematics718
Feynman R.P., Leighton R.B., Sands M. — The Feynman lectures on physics (vol.2)II-3-1
Dubrovin B.A., Fomenko A.T., Novikov S.P. — Modern Geometry - Methods and Applications. Part 1. The Geometry of Surfaces, Transformation Groups and Fields251, 256
Spivak M. — A Comprehensive Introduction to Differential Geometry (Vol.1)239, 243
Munkres J.R. — Analysis on manifolds278
Nayfeh M.H., Brussel M.K. — Electricity and Magnetism19
Kleppner D., Kolenkow R. — An introduction to mechanics159, 166
Sattinger D.H., Weaver O.L. — Lie groups and algebras with applications to physics, geometry, and mechanics62
Bak J., Newman D.J. — Complex Analysis44
Kenzel W., Reents G., Clajus M. — Physics by Computer36
Fine B., Rosenberger G. — Fundamental Theorem of Algebra52-61
Asmar N.H. — Partial Differential Equations with fourier series and boundary value problems643
Pipes L.A. — Applied Mathemattics for Engineers and Physicists347
Kuttler K. — Calculus, Applications and Theory373
Olver P.J., Shakiban C. — Applied linear. algebra125
Clemens C.H. — Scrapbook of Complex Curve Theory56
Kreyszig E. — Advanced engineering mathematics421, 633
Neff H.P.Jr. — Introductory electromagnetics9
Houston W.V. — Principles of Mathematical Physics88
Boothby W.M. — An Introduction to Differentiable Manifolds and Riemannian Geometry264
Arya A.P. — Introduction to Classical Mechanics161
Kaplan W. — Introduction to analytic functions29
Huggins E.R. — Physics 2000(see Integral, line)
Harman T.L., Dabney J.B., Richert N.J. — Advanced Engineering Mathematicas with MATLAB670
Nehari Z. — Conformal mapping6
Papoulis A. — The Fourier Integral and Its Applications290
Shorter L.R. — Problems And Worked Solutions In Vector Analysis296
Morse P.M. — Methods of theoretical physics17 (see also Integration in complex plane)
Richards P.I. — Manual of Mathematical Physics296
Lane S.M. — Mathematics, form and function173
Hobbie R., Roth B. — Intermediate Physics for Medicine and Biology,142
Hildebrand F.B. — Advanced Calculus for Applications281, 523
Griffits D.J. — Introductions to electrodynamics24
Strang G. — Introduction to Applied Mathematics199, 364
Blum E.K., Lototsky S.V. — Mathematics of Physics and Engineering131
Anderson J.L. — Principles of Relativity Physics29
Hassani S. — Mathematical Methods: for Students of Physics and Related Fields387—391
Vaisala J. — Lectures On N-Dimensional Quasiconformal Mappings8
Spivak M. — Calculus on Manifolds: A Modern Approach to Classical Theorems of Advanced Calculus101
Murty R., Murty K. — Non-vanishing of L-Functions and Applications (Progress in Mathematics)6
Greub W., Halperin S., Vanstone R. — Connections, curvature, and cohomology. Volume 1234
Heinonen J. — Lectures on Analysis on Metric Spaces50
Owen D. — A First Course in the Mathematical Foundations of Thermodynamics (Undergraduate Texts in Mathematics)4, 34, 35, 46, 63
Feynman R., Leighton R., Sands M. — Lectures on Physics 2II-3-1
Keith Devlin — Mathematics: The New Golden Age204
Kittel C., Knight W., Ruderman M. — Berkeley physics course 1. Mechanics145
blank
HR
@Mail.ru
© Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2024
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01!| Valid CSS! Î ïðîåêòå