Êíèãà | Ñòðàíèöû äëÿ ïîèñêà |
Weintraub S. — Differential Forms. A complement to vector calculus | |
Guillemin V., Pollack A. — Differential topology | 169, 172 |
Nevanlinna R., Paatero V. — Introduction to Complex Analysis | 108—113 |
Rudin W. — Principles of Mathematical Analysis | 255 |
Keisler H.J. — Elementary calculus | 795 |
Morse P., Feshbach H. — Methods of Theoretical Physics (part 1) | 17 (see also “Integration in complex plane”) |
Morse P., Feshbach H. — Methods of Theoretical Physics (part 2) | 17 (see also “Integration in complex plane”) |
Borisenko A.I., Tarapov I.E. — Vector and Tensor Analysis with Applications | 136 |
Mauch S. — Introduction to Methods of Applied Mathematics or Advanced Mathematical Methods for Scientists and Engineers | 280 |
Silverman J.H. — The arithmetic of elliptic curves | 146, 147; see also Elliptic integral |
Conway J.B. — Functions of One Complex Variable | 63 |
Lee J.M. — Introduction to Smooth Manifolds | 78, 79 |
Millman R.S., Parker G.D. — Elements of Differential Geometry | 50 |
Widder D.V. — Advanced calculus | see Integral |
Weinstock R. — Calculus of variations with applications to physics & engineering | 6, 7 |
Smirnov V.I. — Higher mathematics. Vol.2 | 205—210 |
Ahlfors L.V. — Complex analysis | 101—109 |
Williamson R.E., Crowell R.H., Trotter H.F. — Calculus of vector functions | 130 |
Polya G., Latta G. — Complex Variables | 147 |
Sagan H. — Advanced Calculus of Real-Valued Functions of a Real Variable and Vector-Valued Functions of a Vector Variable | 526 |
Coffin D. — Calculus on the HP-48G/GX | 271—274, 276—277 |
Ablowitz M.J., Fokas A.S. — Complex Variables: Introduction and Applications | 72, 74 |
Weatherburn C. — Advanced Vector Analysis | 13, 86 |
Boothby W.M. — An introduction to differentiable manifolds and riemannian geometry | 264 |
Shankar R. — Basic Training In Mathematics | 159 |
Greiner W. — Classical mechanics. Point particles and relativity | 109 |
Schey H.M. — DIV, Grad, Curl, and All That: An Informal Text on Vector Calculus | 63—72 |
Ayres F.J., Mendelson E. — Schaum's Outline of Calculus | 427 |
Menzel D.H. — Mathematical Physics | 35 |
Perry J. — The Calculus for Engineers | 69, 134 |
Schercliff J.A. — Vector Fields | 33, 62, 88, 95, 130, 272 |
Greenberg M.D. — Advanced engineering mathematics | 718 |
Feynman R.P., Leighton R.B., Sands M. — The Feynman lectures on physics (vol.2) | II-3-1 |
Dubrovin B.A., Fomenko A.T., Novikov S.P. — Modern Geometry - Methods and Applications. Part 1. The Geometry of Surfaces, Transformation Groups and Fields | 251, 256 |
Spivak M. — A Comprehensive Introduction to Differential Geometry (Vol.1) | 239, 243 |
Munkres J.R. — Analysis on manifolds | 278 |
Nayfeh M.H., Brussel M.K. — Electricity and Magnetism | 19 |
Kleppner D., Kolenkow R. — An introduction to mechanics | 159, 166 |
Sattinger D.H., Weaver O.L. — Lie groups and algebras with applications to physics, geometry, and mechanics | 62 |
Bak J., Newman D.J. — Complex Analysis | 44 |
Kenzel W., Reents G., Clajus M. — Physics by Computer | 36 |
Fine B., Rosenberger G. — Fundamental Theorem of Algebra | 52-61 |
Asmar N.H. — Partial Differential Equations with fourier series and boundary value problems | 643 |
Pipes L.A. — Applied Mathemattics for Engineers and Physicists | 347 |
Kuttler K. — Calculus, Applications and Theory | 373 |
Olver P.J., Shakiban C. — Applied linear. algebra | 125 |
Clemens C.H. — Scrapbook of Complex Curve Theory | 56 |
Kreyszig E. — Advanced engineering mathematics | 421, 633 |
Neff H.P.Jr. — Introductory electromagnetics | 9 |
Houston W.V. — Principles of Mathematical Physics | 88 |
Boothby W.M. — An Introduction to Differentiable Manifolds and Riemannian Geometry | 264 |
Arya A.P. — Introduction to Classical Mechanics | 161 |
Kaplan W. — Introduction to analytic functions | 29 |
Huggins E.R. — Physics 2000 | (see Integral, line) |
Harman T.L., Dabney J.B., Richert N.J. — Advanced Engineering Mathematicas with MATLAB | 670 |
Nehari Z. — Conformal mapping | 6 |
Papoulis A. — The Fourier Integral and Its Applications | 290 |
Shorter L.R. — Problems And Worked Solutions In Vector Analysis | 296 |
Morse P.M. — Methods of theoretical physics | 17 (see also Integration in complex plane) |
Richards P.I. — Manual of Mathematical Physics | 296 |
Lane S.M. — Mathematics, form and function | 173 |
Hobbie R., Roth B. — Intermediate Physics for Medicine and Biology, | 142 |
Hildebrand F.B. — Advanced Calculus for Applications | 281, 523 |
Griffits D.J. — Introductions to electrodynamics | 24 |
Strang G. — Introduction to Applied Mathematics | 199, 364 |
Blum E.K., Lototsky S.V. — Mathematics of Physics and Engineering | 131 |
Anderson J.L. — Principles of Relativity Physics | 29 |
Hassani S. — Mathematical Methods: for Students of Physics and Related Fields | 387—391 |
Vaisala J. — Lectures On N-Dimensional Quasiconformal Mappings | 8 |
Spivak M. — Calculus on Manifolds: A Modern Approach to Classical Theorems of Advanced Calculus | 101 |
Murty R., Murty K. — Non-vanishing of L-Functions and Applications (Progress in Mathematics) | 6 |
Greub W., Halperin S., Vanstone R. — Connections, curvature, and cohomology. Volume 1 | 234 |
Heinonen J. — Lectures on Analysis on Metric Spaces | 50 |
Owen D. — A First Course in the Mathematical Foundations of Thermodynamics (Undergraduate Texts in Mathematics) | 4, 34, 35, 46, 63 |
Feynman R., Leighton R., Sands M. — Lectures on Physics 2 | II-3-1 |
Keith Devlin — Mathematics: The New Golden Age | 204 |
Kittel C., Knight W., Ruderman M. — Berkeley physics course 1. Mechanics | 145 |