Êíèãà | Ñòðàíèöû äëÿ ïîèñêà |
Weintraub S. — Differential Forms. A complement to vector calculus | |
Taylor M.E. — Partial Differential Equations. Basic theory (vol. 1) | 66, 161, 351 |
Taylor M.E. — Partial Differential Equations. Qualitative studies of linear equations (vol. 2) | 244, 391 |
Berger M. — A Panoramic View of Riemannian Geometry | 185, 689 |
Olver P.J. — Equivalence, Invariants and Symmetry | see differential |
Lee J.M. — Differential and Physical Geometry | 209 |
Felsager B. — Geometry, particles and fields | 336—342 |
Hicks N. — Notes on differential geometry | 62, 89 |
Springer G. — Introduction to Riemann Surfaces | 158 |
Lee J.M. — Introduction to Smooth Manifolds | 214, 215, 217 |
Ward R.S., Wells R.O. — Twistor geometry and field theory | 93, 94, 104, 145, 165, 169, 243, 287, 312 |
Williamson R.E., Crowell R.H., Trotter H.F. — Calculus of vector functions | 400 |
Naber G.L. — The geometry of Minkowski spacetime: an introduction to the mathematics of the special theory of relativity | 130 |
Cherry W., Ye Z. — Nevanlinna's Theory of Value Distribution: The Second Main Theorem and Its Error Terms | 31 |
Michor P.W. — Topics in Differential Geometry | 77 |
Torretti R. — Relativity and Geometry | 101, 267 figure |
Kolar I., Michor P.W., Slovak J. — Natural Operations in Differential Geometry | 65 |
Krantz S.G. — Function Theory of Several Complex Variables | 507 |
Ivey Th.A., Landsberg J.M. — Cartan for Beginners: Differential Geometry Via Moving Frames and Exterior Differential Systems | 337—338 |
Pugh C.C. — Real Mathematical Analysis | 321 |
Jost J., Simha R.T. — Compact Riemann Surfaces: An Introduction to Contemporary Mathematics | 189 |
Duistermaat J.J., Kolk J.A.C. — Multidimensional Real Analysis II: Integration | 544, 574 |
Naber G.L. — Topology, Geometry and Gauge Fields | 247, 256 |
Heusler M., Goddard P. — Black Hole Uniqueness Theorems | 3 |
Arnold V.I., Khesin B.A. — Topological methods in hydrodynamics | 32 |
Lang S.A. — Undergraduate Analysis | 610 |
Stephani H., MacCallum M. (ed.) — Differential equations: Their solution using symmetries | 212 |
Henneaux M., Teitelboim C. — Quantization of Gauge Systems | 118, 169, 483 |
Szekeres P. — A Course in Modern Mathematical Physics: Groups, Hilbert Space and Differential Geometry | 448 |
Lang S. — Real Analysis | 466 |
Green M.B., Schwarz J.H., Witten E. — Superstring Theory (vol. 2) | 287 |
Mukhi S., Mukunda N. — Introduction to Topology, Differential Geometry and Group Theory for Physicists | 38, 54 |
Bleecker D. — Gauge Theory and Variational Principles | 11 |
O'Neill B. — Elementary differential geometry | 28—31, 31—32, 154—155 |
De Felice F., Clarke C.J.S. — Relativity on curved manifolds | 88ff |
Brocker Th., Dieck T.T. — Representations of Compact Lie Groups | 50 |
Bamberg P.G., Sternberg Sh. — A Course in Mathematics for Students of Physics: Volume 1 | 275, 276, 305 |
Kühnel W., Hunt B. — Differential Geometry: Curves - Surfaces - Manifolds | 168 |
Sattinger D.H., Weaver O.L. — Lie groups and algebras with applications to physics, geometry, and mechanics | 65 |
Tamura I. — Topology of lie groups, I and II | 143 |
Bamberg P.G., Sternberg S. — A Course in Mathematics for Students of Physics, Vol. 1 | 275, 276, 305 |
O'Neill B. — The Geometry of Kerr Black Holes | 356 |
Bertlmann R.A. — Anomalies in Quantum Field Theory | 42, 373, 443 |
Straumann N. — General relativity and relativistic astrophysics | 32, 35, 71 |
Hatfield B. — Quantum field theory of point particles and strings | 559 |
Arwini K. — Information Geometry: Near Randomness and Near Independence | 25 |
Oprea J. — Differential Geometry and Its Applications | 432 |
Manton N., Sutcliffe P. — Topological solitons | 60 |
Lang S. — Real and Functional Analysis (Graduate Texts in Mathematics Series #142) | 410 |
Weinberg S. — Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity | 115, 119 |
Bishop R.L., Crittenden R.J. — Geometry of manifolds | 64 |
Polchinski J. — String theory (volume 1). An introduction to the bosonic string | 128 |
Lee J.M. — Differential and physical geometry | 209 |
Baez J.C., Muniain J.P. — Gauge theories, knots, and gravity | 41, 42, 48, 63—65 |
Hermann R. — Differential geometry and the calculus of variations | 20, 46, 113 |
Stoll W. — Value Distribution on Parabolic Spaces | 15 |
Choquet-Bruhat Y., DeWitt-Morette C., Dillard-Bleick M. — Analysis, manifolds and physics. Part I. | 200, 317 |
Israel W. (ed.) — Relativity, astrophysics and cosmology | 59, 296-298 |
Wheeler J.A. — Topics of modern physics. Vol. I. Geometrodynamics | 31, 32 |
Springer G. — Introduction to Riemann Surfaces | 158 |
Taylor M.E. — Partial Differential Equations. Nonlinear Equations (vol. 3) | 469 |
Konopleva N.P., Popov V.N. — Gauge Fields | 106 |
Krantz S.G. — Function theory of several complex variables | 507 |
Lang S. — Undergraduate analysis | 610 |
Avramidi I.G. — Heat Kernel and Quantum Gravity | 46 |
Mielke A. — Hamiltonian and Lagrangian Flows on Center Manifolds: With Applications to Elliptic Variational Problems | 11 |
Weaver N. — Lipschitz Algebras | 203 |
Katz V.J. — A History of Mathematics: An Introduction | 796 |
Pommaret J.F. — Systems of partial differential equations and Lie pseudogroups | 5.7.1 |
Choquet-Bruhat Y. — General Relativity and the Einstein Equations | 6 |
Tuynman G.M. — Supermanifolds and Supergroups: Basic Theory | 249 |
Lane S.M. — Mathematics, form and function | 177 |
Blaszak M. — Multi-Hamiltonian Theory of Dynamical Systems | 28, 38 |
Ivey T.A., Landsberg J.M. — Cartan for beginners: differential geometry via moving frames exterior differential systems | 337-338 |
Naber G.L. — Topology, Geometry and Gauge Fields | 247, 256 |
Penrose R., Rindler W. — Spinors and space-time. Spinor and twistor methods in space-time geometry | 16 |
Israel W. (ed.) — Relativity, astrophysics and cosmology | 59, 296—298 |
Zeidler E. — Oxford User's Guide to Mathematics | 300 |
Israel W. — Relativity, Astrophysics and Cosmology | 59, 296—298 |
Polchinski J. — String theory (volume 2). Superstring theory and beyond | 305, 307, 450 |
Fritzsche K., Grauert H. — From Holomorphic Functions To Complex Manifolds | 301 |
Greub W., Halperin S., Vanstone R. — Connections, curvature, and cohomology. Volume 1 | 145 |
Milnor J.W., Stasheff J.D. — Characteristic Classes. (Am-76), Vol. 76 | 292 |
Flanders H. — Differential Forms with Applications to the Physical Sciences | 20 ff |
Santalo L., Kac M. — Integral geometry and geometric probability | 144, 358 |
Schutz B. — Geometrical Methods in Mathematical Physics | 134
Exterior derivative, commutes with Lie derivative |
Choquet-Bruhat Y., Dewitt-Morette C. — Analysis, manifolds and physics | 200, 317 |
Prigogine I. (ed.) — Advances in Chemical Physics. Volume XIX | 350 |
Morrey C. — Multiple integrals in the calculus of variations | 290 |
Nash C., Sen S. — Topology and geometry for physicists | 41—43, 121—123 |