| Êíèãà | Ñòðàíèöû äëÿ ïîèñêà |
| Arveson W. — An Invitation to C-Algebras | 6 |
| Kadison R.V., Ringrose J.R. — Fundamentals of the theory of operator algebras (vol. 1) Elementary Theory | 105, 294 |
| Nagel R. — One-parameter semigroups of positive operators | 380, 392 |
| Hunter J.K., Nachtergaele B. — Applied Analysis | 217 |
| Reed M., Simon B. — Methods of Modern mathematical physics (vol. 1) Functional analysis | 197, 297—298 |
| Ito K. — Encyclopedic Dictionary of Mathematics. Vol. 2 | 251.E |
| Bathe K.-J. — Finite element procedures | 508 |
| Lang S. — Algebra | 584 |
| Guillemin V., Sternberg S. — Geometric Asymptotics | 266, 269 |
| Wegge-Olsen N.E. — K-Theory and C*-Algebras: a friendly approach | 1.5, l.A, 15.3.7f, 15.L, 17.1.5 |
| Ben-Israel A., Greville T. — Generalized inverses: Theory and applications | 196 |
| Chebotarev A.M. — Lectures on quantum probability | 20 |
| Bonet J., Wood R.D. — Nonlinear Continuum Mechanics for Finite Element Analysis | 28, 68—72 |
| Crisfield M.A. — Non-Linear Finite Element Analysis of Solids and Structures. Vol. 2: Advanced Topics | 3, 21, 89, 267 |
| Higham N. — Accuracy and stability of numerical algorithms | 386, 389 |
| Golub G.H., van Loan C.F. — Matrix Computations | 149 |
| Hoffman K., Kunze R. — Linear algebra | 343 |
| Lutkepohl H. — Handbook of Matrices | 61, 88 |
| Mimura M., Toda H. — Topology of Lie Groups, I and II | 34, 36 |
| Folland J.B. — Real Analysis: Modern Techniques and Their Applications | 46 |
| Artin M. — Algebra | 304 |
| Douglas R.G. — Banach algebra techniques in operator theory | 97, 98 |
| Birman M.S., Solomyak M.Z. — Spectral Theory of Self-Adjoint Operators in Hilbert Space | 183 |
| Pedersen G.K. — C*-algebras and their automorphism groups | 23 |
| Hagen R., Roch S., Silbermann B. — C-Algebras and Numerical Analysis | 84 |
| Marmo G., Skagerstam B.S., Stern A. — Classical topology and quantum states | 252 |
| Gracia-Bondia J.M., Varilly J.C., Figueroa H. — Elements of Noncommutative Geometry | 143, 233, 310, 314 |
| Halmos P.R. — Hilbert Space Problem Book | 56, 134, 135, 170, 175, 211 |
| Blackadar B. — K-theory for operator algebras | 3.1.7 |
| Young R.M. — An Introduction to Non-Harmonic Fourier Series, Revised Edition | 48 |
| Reed M., Simon B. — Methods of Modern mathematical physics (vol. 3) Scattering theory | 197, 297 |
| Weickert J. — Visualization and Processing of Tensor Fields: Proceedings of the Dagstuhl Workshop | 333 |
| Hall B.C. — Lie Groups, Lie Algebras, and Representations: An Elementary Understanding | 19, 342 |
| Duistermaat J.J., Kolk J.A.C. — Multidimensional Real Analysis II: Integration | 247 |
| Dolzmann D. — Variational Methods for Crystalline Microstructure - Analysis and Computation | 198 |
| Duistermaat J.J., Kolk J.A.C. — Multidimensional Real Analysis I(Cambridge Studies in Advanced Mathematics #86), Vol. 1 | 247 |
| Bronson R. — Schaum's Outline of Matrix Operations | 202 |
| Reed M., Simon B. — Methods of Functional Analysis (in 4 volumes). Volume 1: Functional Analysis | 197, 297—298 |
| Reed M., Simon B. — Methods of Modern mathematical physics (vol. 4) Analysis of operators | $197^1$, $297^1$ |
| Platonov V., Rapinchuk A. — Algebraic groups and number theory | 124, 126 |
| Streater R.F. (Ed) — Mathematics of Contemporary Physics | 181 |
| Rudin W. — Functional analysis | 315, 364 |
| Lang S. — Undergraduate Algebra | 253 |
| Lang S. — Real Analysis | 188 |
| Ito K. — Encyclopedic Dictionary of Mathematics | 251.E |
| Lay D.C. — Linear Algebra And Its Applications | 445 |
| Lebedev L.P., Cloud M.J. — Tensor Analysis | 46 |
| Thaller B. — The Dirac equation | 69, 143 |
| Higham N.J. — Accuracy and Stability of Numerical Algorithms | 377, 380 |
| Gallier J. — Geometric Methods and Applications: For Computer Science and Engineering | 188, 336, 344 |
| Halmos P.R. — Finite-Dimensional Vector Spaces | 170 |
| Havin V.P., Nikolski N.K. (eds.) — Linear and Complex Analysis Problem Book 3 (part 2) | 3.3, 8.9, 9.2 |
| Strang G. — Linear Algebra and Its Applications | 445 |
| Lang S. — SL2: With 33 Figures | 155 |
| Al-Khalili J.S., Roeckl E. — The Euroschool Lectures on Physics with Exotic Beams, Vol. 2 | 155 |
| Guillemin V. — Geometric Asymptotics (Mathematical Surveys and Monographs Number 14) | 266, 269 |
| Graham C.C., McGehee O.C. — Essays in Commutative Harmonic Analysis | 127 |
| Young R.M. — An Introduction to Nonharmonic Fourier Series | 48 |
| Bogolubov N.N., Logunov A.A., Todorov I.T. — Introduction to Axiomatic Quantum Field Theory | 135, 158—159, 161 |
| Miller W. — Symmetry Groups and Their Applications | 295, 349 |
| Berberian S.K. — Baer *-Rings | 134 |
| Fuhrmann P.A. — A Polynomial Approach to Linear Algebra | 174 |
| Olver P.J., Shakiban C. — Applied linear. algebra | 421 |
| Faraut J., Korányi A. — Analysis on symmetric cones | 102 |
| Steeb W.- H. — Problems and Solutions in Introductory and Advanced Matrix Calculus | 105 |
| Conway J.B. — A Course in Functional Analysis | 61, 248, 273 |
| Trefethen L.N., Bau D. — Numerical Linear Algebra | 331 |
| Lang S. — Real and Functional Analysis (Graduate Texts in Mathematics Series #142) | 454, 460 |
| Stewart G.W., Sun J. — Matrix perturbation theory | 36 |
| Katznelson I., KatznelsonY.R. — A (Terse) Introduction to Linear Algebra (Student Mathematical Library) | 128 |
| Bjoerck A., Dahlquist G. — Numerical mathematics and scientific computation | 113 |
| Lang S. — Algebra | 584 |
| Klauder J.R., Sudarshan E.C.G. — Fundamentals of Quantum Optics | 67 |
| Lance E.C. — Hilbert C*-modules: a toolkit for operator algebraists | 29 |
| Audin M. — Geometry | 242 |
| Audin M. — Geometry | 242 |
| Amrein W.O., Sinha K.B., Jauch J.M. — Scattering Theory in Quantum Mechanics: Physical Principles and Mathematical Methods | 97—98, 190, 235, 557 |
| Astarita G., Marrucci G. — Principles of Non-Newtonian Fluid Mechanics | 80, 92 |
| Douglas R.G. — Banach algebra techniques in operator theory | 97, 98 |
| Schneider H. (ed.) — Recent advances in matrix theory | 135 |
| Isotalo J., Puntanen S — Formulas Useful for Linear Regression Analysis and Related Matrix Theory | 70 |
| Kuttler K.L. — Modern Analysis | 224 |
| Tzenov S.I. — Contemporary Accelerator Physics | 143 |
| Moskowitz M.A. — Adventures in mathematics | 33, 35 |
| de Leon M., Rodrigues P.R. — Methods of differential geometry in analytical mechanics | 109 |
| Thaller B. — The Dirac equation | 69, 143 |
| Loomis L.H., Sternberg S. — Advanced calculus | 263 |
| Jajte R. — Strong Limit Theorems in Non-Commutative Probability | 112 |
| Howes N.R — Modern Analysis and Topology | 380, 382 |
| Strang G. — Introduction to Applied Mathematics | 79, 223 |
| Kuo H.-H. — Gaussian Measures in Banach Spaces | 8 |
| Barut A.O. — Electrodynamics and Classical Theory of Fields and Particles | 44 |
| Zeidler E. — Oxford User's Guide to Mathematics | 637 |
| Horn R.A. — Matrix Analysis | see "Polar form" |
| Gohberg I., Goldberg S., Kaashoek M. — Classes of linear operators. (volume 2) | 84 |
| Gohberg I., Goldberg S., Kaashoek M. — Classes of linear operators. (volume 1) | 84 |
| Blanchard P., Bruening E. — Mathematical Methods in Physics: Distributions, Hilbert Space Operators, and Variational Method | 289 |
| Golan J.S. — The Linear Algebra a Beginning Graduate Student Ought to Know (Texts in the Mathematical Sciences) | 382 |
| Bhatia R. — Matrix Analysis | 6, 213, 267, 276, 305 |
| Lang S. — SL2 (R) (Graduate Texts in Mathematics) | 155 |
| Gripenberg G., Londen S.O., Staffans O. — Volterra integral and functional equations | 96, 525 |
| Jorgensen P.E.T. — Analysis and Probability: Wavelets, Signals, Fractals | 150, 201 |