|
|
Результат поиска |
Поиск книг, содержащих: Cartan, E.
Книга | Страницы для поиска | Вайнберг С. — Квантовая теория поля. Том 1. Основы | 342 | Чеботарев Н.Г. — Теория Галуа | 120, 121, 122, 123, 128 | Бляшке В. — Дифференциальная геометрия и геометрические основы теории относительности Эйнштейна (том 1) | 301, 322, 323 | Вайнберг С. — Квантовая теория поля. Том 2. Современные приложения | 87 | Куренский М.К. — Дифференциальные уравнения с частными производными (том 2) | I: 83, II: 42, 73, 74, 179, 201 | Ito K. — Encyclopedic Dictionary of Mathematics. Vol. 2 | 50 | Gilbert J., Murray M. — Clifford Algebras and Dirac Operators in Harmonic Analysis | 143, 150, 163 | Olver P.J. — Equivalence, Invariants and Symmetry | xii, xiii, 3-5, 26, 28, 31, 53, 55, 103, 156, 178, 221, 244, 252, 253, 262, 280, 288, 292, 297, 338, 342, 348, 350, 353, 356, 372, 386, 397, 398, 403, 407, 408, 409, 421, 431, 440, 444, 453, 459, 461, 470, 471, [33—42] | Cvitanovic P. — Group theory (Lie and other) | 129 | Hewitt E., Ross K.A. — Abstract Harmonic Analysis (Vol. 1) | 32 | Springer G. — Introduction to Riemann Surfaces | 163 | Hewitt E., Ross K.A. — Abstract Harmonic Analysis (Vol. 2) | 153, 548 | Ward R.S., Wells R.O. — Twistor geometry and field theory | 2, 37, 125 | Naber G.L. — The geometry of Minkowski spacetime: an introduction to the mathematics of the special theory of relativity | 143 | Bryant R., Griffiths P., Grossman D. — Exterior differential systems and Euler-Lagrange PDEs | ix, xi, 37 | Behnke H., Bachmann F., Fladt K. — Fundamentals of Mathematics, Volume II: Geometry | 533 | Hazewinkel M. (ed.) — Handbook of Algebra, Volume 4 | 111 | Vojta P.A. — Diophantine Approximations and Value Distribution Theory | 89 | Cannas da Silva A., Weinstein A. — Geometric Models for Noncommutative Algebra | 9 | Shafarevich I.R., Kostrikin A.I. (ed.) — Basic Notions of Algebra | 197 | Lam T.Y. — A first course in noncommutative ring theory | 51, 346, 376 | Coxeter H.S.M., Moser W.O.J. — Generators and Relations for Discrete Groups | 121, 122, 132 | Hirzebruch F. — Topological Methods in Algebraic Geometry | 159, 163 | Shafarevich I.R., Danilov V.I., Iskovskih V.A. — Algebraic Geometry II : Cohomology of Algebraic Varieties. Algebraic Surfaces (Encyclopaedia of Mathematical Sciences) | 194, 223 | O'Donnel P. — Introduction to 2-Spinors in General Relativity | 1 | Cohen H.A. — A Course in Computational Algebraic Number Theory | 107 | Schouten J.A., van der Kulk W. — Pfaffs Problem and Its Generalizations | v, vi, 73, 136, 148, 151, 153, 160, 172, 173, 199, 349, 350, 355, 358, 377, 378, 385, 387, 388, 410, 416, 417, 461, 475, 502, 529 | Ito K. — Encyclopedic Dictionary of Mathematics | 50 | Yam T.Y. — Lectures on Modules and Rings | 430 | O'Neill B. — Elementary differential geometry | 42, 92, 96, 303 | Bellman R. — Introduction to Matrix Analysis | 237 | Yano K. — Differential geometry on complex and almost complex spaces | 1, 305 | O'Neill B. — Semi-Riemannian Geometry: With Applications to Relativity | 224 | Kühnel W., Hunt B. — Differential Geometry: Curves - Surfaces - Manifolds | 166 | Guggenheimer H.W. — Differential Geometry | 10, 113, 139, 147, 148, 154, 188, 205, 238, 246, 247, 260, 340, 349, 354, 361 | Weinberg S. — The Quantum Theory of Fields. Vol. 1 Foundations | 256 | Bogolubov N.N., Logunov A.A., Todorov I.T. — Introduction to Axiomatic Quantum Field Theory | 225 | Hazewinkel M. — Handbook of Algebra (part 2) | 617 | Wawrzynczyk A. — Group representations and special functions | 91, 241, 475, 532, 536, 540, 558, 570, 584 | Sokolnikoff I.S. — Tensor Analysis: Theory and Applications to Geometry and Mechanics of Continua | 98 | Gilmore R. — Lie Groups, Lie Algebras and Some of Their Applications | x, 108, 248, 255, 277, 427, 435 | Basdevant J.-L., Dalibard J. — Quantum Mechanics | 190, 246 | Aleksandrov A.D., Kolmogorov A.N. — Mathematics. It's content, methods, and meaning (Vol. 3) | 177, 307, 342 | Carmeli M. — Classical Fields: General Gravity and Gauge Theory | 408, 480 | Whittaker E. — A history of the theories of aether and electricity (Vol 2. The modern theories) | 190, 192 | Barut A.O., Raczka R. — Theory of Group Representations and Applications | 13, 19, 20, 23, 34, 39, 40, 46, 47, 94, 100, 103, 104, 106, 114, 132, 470 | Struik D.J. — A concise history of mathematics. Volume 2 | 275 | Simmons G.F. — Differential Equations with Applications and Historical Notes | 387 | Onishchik A.L. (ed.), Vinberg E.B. (ed.) — Lie Groups and Lie Algebras | 140, 189 | Monastyrsky M. — Modern mathematics in the light of the Fields medals | 12 | Browder A. — Mathematical Analysis: An Introduction | 284 | Alekseevskij D.V., Vinogradov A.M., Lychagin V.V. — Geometry I: Basic Ideas and Concepts of Differential Geometry | 77, 92, 144, 145, 189, 194, 196, 204, 209 | Gantmacher F. — Lectures in Analytical Mechanics | 8, 119 | Weinberg S. — The Quantum Theory of Fields. Vol. 2 Modern Applications | 11, 26, 62 | Onishchik A.L., Vinberg E.B. (eds.) — Lie Groups and Lie Algebras (volume 2) | 140, 189 | Wheeler J.A. — Topics of modern physics. Vol. I. Geometrodynamics | xiv, xv, 92 n, 237, 255, 260 n, 238 n, 295 n | Thomas J.M. — Differential systems | v, 10, 25, 79, 83, 114 | Amoroso R.L. (ed.), Hunter G. (ed.), Vigier J.-P. (ed.) — Gravitation and Cosmology: From the Hubble Radius to the Planck Scale | 1, 197 | Gorbatsevich V.V., Vinberg E.B., Onishchik A.L. — Foundations of Lie theory and Lie transformation groups | 47, 87, 218 | Springer G. — Introduction to Riemann Surfaces | 163 | Thomas J.M. — Differential systems | v, 10, 25, 79, 83, 114 | Conway J.H., Smith D.A. — On Quaternions and Octonions: Their Geometry, Arithmetic, and Symmetry | 5 | Sommerfeld A., Ramberg Edward G. (translator) — Electrodynamics. Lectures on theoretical physics, Vol. III | 310 | Porteous I.R. — Clifford Algebras and the Classical Groups | 247, 256, 278, 285 | Kentaro Yano — Integral Formulas in Riemannian Geometry | 1, 141 | Chandler B., Magnus W. — The history of combinatorial group theory: a case study in the history of ideas | 31 | Davis H.T. — Introduction to nonlinear differential and integral equations | 20 | Boerner H. — Representations of Groups | VIII, 33, 34, 167, 232, 234, 249, 267, 301, 305, 316 | Dunford N., Schwartz J., Bade W.G. — Linear operators. Part 2 | 607, 1148 | Penrose R., Rindler W. — Spinors and space-time. Spinor and twistor methods in space-time geometry | 67, 131, 223, 441, 462 | Hille E., Phillips R.S. — Functional Analysis and Semi-Groups | 718 | Synge J.L. — Relativity: The Special Theory | 75 | Klimyk A.U., Vilenkin N.Ya. — Representation Theory and Noncommutative Harmonic Analysis II: Homogeneous Spaces, Representations and Special Functions | 4, 63, 128 | Barut A.O. — Electrodynamics and Classical Theory of Fields and Particles | 26 | Pier J.-P. — Mathematical Analysis during the 20th Century | 10, 137, 173, 180, 181, 182, 183, 184, 185, 186, 188, 189, 190, 193, 194, 234, 237, 274, 280, 283, 284, 285, 289, 298, 300, 341 | Dunford N., Schwartz J.T., Bade W.G. — Linear Operators, Part II: Spectral Theory. Self Adjoint Operators in Hilbert Space (Pure and Applied Mathematics: A Series of Texts and Monographs) | 607, 1148 | Bell E.T. — Mathematics: Queen and Servant of Science | xiv, 183 | Yano K. — Integral Formulas in Riemannian Geometry | 1, 141 | Flanders H. — Differential Forms with Applications to the Physical Sciences | 3, 4, 96, 99, 108, 176, 197 | Santalo L., Kac M. — Integral geometry and geometric probability | 145(85), 151, 152, 153, 154, 180, 211, 331, 339(89), 342(86), 353 | Schutz B. — Geometrical Methods in Mathematical Physics | 113 | Zorich V.A., Cooke R. — Mathematical analysis II | 250 | Zorich V. — Mathematical Analysis | 250 | Shafarevich I.R. (ed.) — Algebraic Geometry II: Cohomology of Algebraic Varieties. Algebraic Surfaces (Encyclopaedia of Mathematical Sciences. Volume 35) | 194, 223 | Лукомская А.М. — Основные иностранные библиографические источники по математике и механике 1931-1957 | 392 |
|
|