Êíèãà | Ñòðàíèöû äëÿ ïîèñêà |
Heinbockel J.H. — Introduction to tensor calculus and continuum mechanics | 66, 81 |
Spiegel M.R. — Mathematical Handbook of Formulas and Tables | 124, 125 |
Ito K. — Encyclopedic Dictionary of Mathematics. Vol. 2 | 90.C, App. A, Table 3.V |
Morse P., Feshbach H. — Methods of Theoretical Physics (part 1) | 21—31 |
Morse P., Feshbach H. — Methods of Theoretical Physics (part 2) | 21—31 |
Bird R.B., Lightfoot E.N., Stewart W.E. — Transport Phenomena | 20, 825, 829, 839 |
Borisenko A.I., Tarapov I.E. — Vector and Tensor Analysis with Applications | 11, 86 |
Hamilton W.R. — The collected mathematical papers. Volume 1: geometrical optics | 222. See also Marks of position |
Eisenhart L.P. — An introduction to differential geometry with use of the tensor calculus | 47, 69 |
Zienkiewicz O.C., Taylor L.R. — The finite element method (vol. 1, The basis) | 213 |
Zienkiewicz O.C., Taylor L.R. — The finite element method (vol. 2, Solid mechanics) | 128, 244, 268 |
Smirnov V.I. — Higher mathematics. Vol.2 | 174, 188, 337 |
Kundu P.K., Cohen I.R. — Fluid mechanics | 710—714 |
Williamson R.E., Crowell R.H., Trotter H.F. — Calculus of vector functions | 190 |
Polyanin A., Manzhirov A.V. — Handbook of Mathematics for Engineers and Scientists | 387 |
Hertrich-Jeromin U. — Introduction to Mobius Differential Geometry | 337 |
Weatherburn C. — Advanced Vector Analysis | 11, 12, 18 |
Sokolnikoff I.S. — Mathematical Theory of Elasticity | 197 |
Greiner W. — Quantum mechanics. An introduction | 190 ff. |
Eringen A.C. — Mechanics of continua | 210, 260, 541 |
Kline M. — Mathematical Thought from Ancient to Modern Times, Vol. 1 | 687—689, 713—714 |
Planck M. — Introduction to Theoretical Physics | see Coordinates, curvilinear |
Kline M. — Mathematical Thought from Ancient to Modern Times, Vol. 3 | 687—689, 713—714 |
Ito K. — Encyclopedic Dictionary of Mathematics | 90.C, App. A, Table 3.V |
Menzel D.H. — Mathematical Physics | 108 |
Sokolnikoff I.S. — Higher Mathematics for Engineers and Physicists | 433—439 |
Lanzcos C. — The Variational Principles of Mechanics | 19, 93 |
Lebedev L.P., Cloud M.J. — Tensor Analysis | 54 |
Sokolnikoff I.S. — Mathematics of Physics and Modern Engineering | see “Coordinates” |
Schercliff J.A. — Vector Fields | 59, 264 |
Greenberg M.D. — Advanced engineering mathematics | 733 |
Wolf-Gladrow D.A. — Lattice-gas cellular automata and lattice Boltzmann models | 243 |
van de Hulst H.C. — Light Scattering by Small Particles | 329, 330 |
Ting L., Klein R. — Viscous Vortical Flows (Lecture Notes in Physics) | 52, 79 |
Kline M. — Mathematical Thought from Ancient to Modern Times, Vol. 2 | 687—689, 713—714 |
Zeldovich Ya.B., Yaglom I.M. — Higher Math for Beginners | 520 |
Nikiforov A.F., Uvarov V. — Special Functions of Mathematical Physics: A Unified Introduction with Applications | 297 |
Strichartz R.S. — The way of analysis | 581 |
Chan T., Shen J. — Image Processing and Analysis: Variational, PDE, Wavelet, and Stochastic Methods | 365 |
Fomenko À.Ò., Mishehenko A.S. — A Short Course in Differential Geometry and Topology | 4 |
Englert B.G. (Ed) — Quantum Mechanics | 292—293 |
Achenbach J.D. — Wave propagation in elastic solids | 68—73 |
Rivers R.J. — Path Integral Methods in Quantum Field Theory | 123, 135 |
Park D. — Introduction to the quantum theory | 156 |
Selvadurai A.P.S. — Partial Differential Equations in Mechanics 1: Fundamentals, Laplace's Equation, Diffusion Equation, Wave Equation | 14, 17 |
Stratton J.A. — Electromagnetic Theory | 38 |
Spiegel M.R. — Schaum's mathematical handbook of formulas and tables | 124, 125 |
Kreyszig E. — Advanced engineering mathematics | A71 |
Stewart I.W. — The Static and Dynamic Continuum Theory of Liquid Crystals: A Mathematical Introduction | 53 |
Houston W.V. — Principles of Mathematical Physics | 93 |
Nayfeh A.H., Pai P.F. — Linear and Nonlinear Structural Mechanics | 76, 80, 99, 108, 195, 198, 200, 216, 248, 355, 356, 358, 388, 392, 395, 396, 417, 446, 559, 563, 566, 588 |
Bird R.B., Armstrong R.C., Hassager O. — Dynamics of polymeric liquids (Vol. 1. Fluid mechanics) | (1)577—596 |
Mihalas D., Mihalas B.W. — Foundations of Radiation Hydrodynamics | 73—74 |
Slater J.C., Frank N.H. — Mechanics | 285—287 |
Margenau H., Murphy G.M. — The mathematics of physics and chemistry | 172 |
Carmeli M. — Classical Fields: General Gravity and Gauge Theory | 12 |
Landau L.D., Lifshitz E.M. — The classical theory of fields | 247 |
Sokolnikoff I.S. — Mathematical Theory of Elasticity | 197 |
Curle N., Davies H. — Modern Fluid Dynamics. Compressible flow | 106 |
Alekseevskij D.V., Vinogradov A.M., Lychagin V.V. — Geometry I: Basic Ideas and Concepts of Differential Geometry | 29 |
Lanczos C. — Variational principles of mechanics | 19, 93 |
Harman T.L., Dabney J.B., Richert N.J. — Advanced Engineering Mathematicas with MATLAB | 589, 631 |
Riley, Hobson — Mathematical Methods for Physics and Engineering | 370—375 |
Stratton J.A. — Electromagnetic Theory | 38 |
Morse P.M. — Methods of theoretical physics | 21—31 |
Thomas T.Y. — Concepts from Tensor Analysis and Differential Geometry | 75 |
Dickey F.M., Holswade S.C. — Laser beam shaping. Theory and techniques | 341 |
Wolfgang K. H. Panofsky, Phillips Panofsky, Melba Panofsky — Classical Electricity and Magnetism | 473 |
Wiedemann H. — Particle accelerator physics II | 43 |
Ciarlet P.G. — Mathematical elasticity. Volume II: Theory of plates | 219 |
Lemm J.M. — Mathematical elasticity. Theory of shells | 15 |
Hildebrand F.B. — Advanced Calculus for Applications | 298, 346, 480 (7) |
Griffits D.J. — Introductions to electrodynamics | 38, 547—554 |
Schutz B.F. — A first course in general relativity | 126 |
Jeffreys H. — Methods Of Mathematical Physics | 157, 532, 694 |
Wrede R.C., Spiegel M. — Theory and problems of advanced calculus | 125, 139 |
Schouten J.A. — Tensor Analysis for Physicists | 59, 110 |
Jeans J.H. — The Mathematical Theory of Electricity and Magnetism | 238 |
Kanwal R.P. — Generalized functions: Theory and technique | 56, 57, 109 ff |
Greiner W., Maruhn J. — Nuclear models | 151, 152 |
Necas J., Hlavacek I. — Mathematical Theory of Elastic and Elastico-Plastic Bodies: An Introduction | 109 |
Park D. — Introduction to the Quantum Theory (Pure & Applied Physics) | 156 |
Weber E. — Electromagnetic Fields - Theory and Applications (Volume 1 - Mapping of Fields) | 440, 545, see also "Coordinates" |
Synge J. L. — Tensor Calculus | 26 |
Reichl L.E. — Modern Course in Statistical Physics | 540 |
Bird R.B., Curtiss C.F., Armstrong R.C. — Dynamics of Polymeric Liquids. Vol. 2. Kinetic Theory | (1)577—596 |
Krall N., Trivelpiece A. — Principles of Plasma Physics | 631—643 |
Kline M. — Mathematical thought from ancient to modern times | 687, 689, 713, 714 |
Bell J., Kearsley M., Pitaevskii L. — Course of Theoretical Physics, Volume 8, Volume 8, Second Edition: Electrodynamics of Continuous Media | 452—3 |
Landau L.D., Lifshitz E.M. — Course of Theoretical Physics, Volume 8: Electrodynamics of Continuous Media | 452—3 |
Bell J.S., Kearsley M.J. — Course of Theoretical Physics, Volume 8: Electrodynamics of Continuous Media | 452—3 |
L.D. Landau, E.M. Lifshitz — Electrodynamics of Continuous Media | 452—3 |
L.D. Landau — Electrodynamics of Continuous Media | 452—3 |
L. D. LANDAU, E. M. LIFSHITZ — ELECTRODYNAMICS OF CONTINUOUS MEDIA | 452—3 |