Êíèãà | Ñòðàíèöû äëÿ ïîèñêà |
Bartle R.G. — The Elements of Real Analysis | 83 |
Aleksandrov A.D., Zalgaller V.A. — Intrinsic Geometry of Surfaces | 1 |
Henrici P. — Applied and Computational Complex Analysis. I: Power Series, Integration, Conformal Mapping, Location of Zeros. | 310 |
Gray R.M. — Probability, Random Processes and Ergodic Properties | 35 |
Rudin W. — Principles of Mathematical Analysis | 30 |
Eisenhart L.P. — Riemannian geometry | 34 |
Seebach J.A., Steen L.A. — Counterexamples in Topology | 34 |
Rudin W. — Real and Complex Analysis | 9 |
Matousek J. — Lectures on Discrete Geometry (some chapters) | 331 |
Isham J. — Modern Differential Geometry for Physics | 3, 6, 31, 54 |
Lefschetz S. — Algebraic topology | 33, 34 |
Lee J.M. — Introduction to Topological Manifolds | 348 |
Ahlfors L.V. — Complex analysis | 51—54 |
Papapetrou A. — Lectures on general relativity | 31 |
Brin M., Stuck G. — Introdution to dynamical system | 28 |
Loeve M. — Probability Theory (part 2) | 173 |
Behnke H., Bachmann F., Fladt K. — Fundamentals of Mathematics, Volume III: Analysis | 11—12, 423, 513 |
Behnke H., Bachmann F., Fladt K. — Fundamentals of Mathematics, Volume I: Foundations of Mathematics: The Real Number System and Algebra | 270 |
Behnke H., Bachmann F., Fladt K. — Fundamentals of Mathematics, Volume II: Geometry | 350, 517, 654—660 |
Wolkenhauser O. — Data Engineering: Fuzzy Mathematics in Systems Theory and Data Analysis | 148 |
Sagan H. — Advanced Calculus of Real-Valued Functions of a Real Variable and Vector-Valued Functions of a Vector Variable | 208 |
Polyanin A., Manzhirov A.V. — Handbook of Mathematics for Engineers and Scientists | 196 |
Searcid M. — Metric Spaces | 2—8 |
Loeve M. — Probability Theory (part 1) | 73 |
Aleksandrov A.D., Zalgaller V.A. — Intrinsic Geometry of Surfaces | 1 |
Morris S.A. — Topology without tears | 91 |
Duistermaat J.J., Kolk J.A.C. — Multidimensional Real Analysis II: Integration | 5 |
Duistermaat J.J., Kolk J.A.C. — Multidimensional Real Analysis I(Cambridge Studies in Advanced Mathematics #86), Vol. 1 | 5 |
Geroch R. — Mathematical physics | 137 |
Rudin W. — Functional analysis | 4 |
Boas R.P. — A Primer of Real Functions | 21—25 |
Kline M. — Mathematical Thought from Ancient to Modern Times, Vol. 3 | 1079, 1160—1161 |
Rudin W. — Real and complex analysis | 9 |
Gruenberg K.W. — Linear Geometry | 125 |
Guggenheimer H.W. — Applicable Geometry | 43 |
Helemskii A.Ya. — Lectures and Exercises on Functional Analysis, Vol. 233 | 9 |
Demidov A.S. — Generalized Functions in Mathematical Physics: Main Ideas and Concepts | 33 |
Hu S.-T. — Elements of real analysis | 163 |
Fabian M.J., Hajek P., Pelant J. — Functional Analysis and Infinite-Dimensional Geometry | 145, 233, 331, 365, 418, 420 |
Sokolnikoff I.S. — Tensor Analysis: Theory and Applications to Geometry and Mechanics of Continua | 10, 111 |
Zeidler E. — Nonlinear Functional Analysis and Its Applications: Part 1: Fixed-Point Theorems | 761 |
Pears A.R. — Dimension theory of general spaces | 9 |
M.A.Akivis, V.V.Goldberg — Projective Differential Geometry of Submanifolds | 267 |
Bell E.T. — The Development of Mathematics | 483, 542 |
Carmeli M. — Classical Fields: General Gravity and Gauge Theory | 33 |
Lefschetz S. — Differential Equations: Geometric Theory | 1 |
Browder A. — Mathematical Analysis: An Introduction | 128 |
Grosche C. — Path integrals, hyperbolic spaces, and Selberg trace formulae | 105, 112 |
Cairns S.S. — Introductory topology | 57 |
Goffman C., Pedrick G. — First course in functional analysis | 1 |
Valentine F.A. — Convex Sets | 206 |
Kreyszig E. — Introductory functional analysis with applications | 3 |
Hu S.T. — Introduction to general topology | 105, 112 |
Hu S.-T. — Introduction to contemporary mathematics | 166, 189 |
Hayes D.F. (ed.), Shubin T. (ed.) — Mathematical Adventures for Students and Amateurs | 203—206, 208, 209, 213—215 |
Natanson I.P. — Constructive function theory, Volume II. Approximation in mean | 11 |
Aliprantis C. — Principles of real analysis | 34 |
Przeworska-Rolewicz D., Rolewicz S. — Equations in linear spaces | 117 |
Gleason A. — Fundamentals of Abstract Analysis | 223ff |
Aleksandrov P.S. — Combinatorial topology. Volume 1 | 7 |
Hille E. — Methods in classical and functional analysis | 39-41, 54-55, 159-188 |
Kazarinoff N. — Analytic inequalities | 74 |
McShane E.J., Botts T.A. — Real Analysis | 59ff |
Hewitt E., Stromberg K. — Real and abstract analysis: a modern treatment of the theory of functions of a real variable | 59 |
Dunford N., Schwartz J., Bade W.G. — Linear operators. Part 2 | I.6.1 (18) |
Cloud M.J., Drachman B.C. — Inequalities: with applications to engineering | 53 |
Gruenberg K.W., Weir A.J. — Linear Geometry | 125 |
Behnke H., Bachmann F., Fladt K. — Fundamentals of mathematics. Volume III. Analysis | 11—12, 423, 513 |
Vilenkin N.Ja., Klimyk A.U. — Representation of Lie Groups and Special Functions: Volume 1: Simplest Lie Groups, Special Functions and Integral Transforms | 19 |
Hille E., Phillips R.S. — Functional Analysis and Semi-Groups | 7 |
Berezanskii Ju. M. — Expansions in Eigenfunctions of Selfadjoint Operators (Translations of Mathematical Monographs Vol 17) | 3 |
Zeidler E. — Oxford User's Guide to Mathematics | 254, 352, 596, 716 |
Collatz L. — Functional analysis and numerical mathematics | 21 |
Geroch R. — Mathematical physics | 137 |
Dunford N., Schwartz J.T., Bade W.G. — Linear Operators, Part II: Spectral Theory. Self Adjoint Operators in Hilbert Space (Pure and Applied Mathematics: A Series of Texts and Monographs) | I.6.1 18 |
Ivanov O.A. — Easy as Pi?: An Introduction to Higher Mathematics | 139 |
Lions J-L., Dautray R. — Mathematical Analysis and Numerical Methods for Science and Technology: Volume 2: Functional and Variational Methods | 272 |
Whyburn G.T. — American mathematical society colloquium publications. Volume XXVIII | 5 |
Zorich V.A., Cooke R. — Mathematical analysis II | 1 |
Zorich V. — Mathematical Analysis | 1 |
Yaglom A.M., Yaglom I.M. — Probability and Information | 387 |
Geroch R. — Mathematical physics | 137 |
Whyburn G.T. — Topological analysis | 3 |