|
|
Ðåçóëüòàò ïîèñêà |
Ïîèñê êíèã, ñîäåðæàùèõ: Fundamental solution
Êíèãà | Ñòðàíèöû äëÿ ïîèñêà | Taylor M.E. — Partial Differential Equations. Basic theory (vol. 1) | 211, 213, 217, 221, 417 | Taylor M.E. — Partial Differential Equations. Qualitative studies of linear equations (vol. 2) | 95, 132 | Baker A. — Algebra and Number Theory | 24 | Ammari H., Hyeonbae Kang — Reconstruction of Small Inhomogeneities from Boundary Measurements | 14, 110, 185 | Olver P.J. — Equivalence, Invariants and Symmetry | 184 | Wolf J.P. — The Scaled Boundary Finite Element Method | 25, 28, 148 | Henrici P. — Applied and Computational Complex Analysis (Vol. 3) | 255, 256, 296, 370 | Hormander L. — Notions of Convexity | 117 | Sadd M.H. — Elasticity: theory, applications, and numerics | 111 | Chaudhry M.A., Zubair S.M. — On a Class of Incomplete Gamma Functions with Applications | 334, 335, 417 | Balser W. — Formal power series and linear systems of meromorphic ordinary differential equations | 5 | Debnath L., Mikusinski P. — Introduction to Hilbert Spaces with Applications | 297 | Debnath L. — Nonlinear Partial Differential Equations for Scientists and Engineers | 39—40, 292, 314 | Wilmott P., Bowison S., DeWynne J. — Option Pricing: Mathematical Models and Computation | 90 | Behnke H., Bachmann F., Fladt K. — Fundamentals of Mathematics, Volume III: Analysis | 315, 316, 317, 356 | Kythe P.K., Schaferkotter M.R. — Partial Differential Equations and Mathematica | 177 | Lim Ch., Nebus J. — Vorticity, Statistical Mechanics, and Monte Carlo Simulation | 69, 77, 82, 118 | Sun J.Q. (Ed), Luo A.C. (Ed) — Bifurcation and Chaos in Complex Systems | 282 | Björk J.-E. — Rings of differential operators | 7, 1; p. 291 | Dafermos C.M. (ed.), Feireisl E. (ed.) — Evolutionary Equations, Vol. 1 | 172, 243, 244 | Polyanin A., Manzhirov A.V. — Handbook of Mathematics for Engineers and Scientists | 599, 615 | Debnath L. — Linear Partial Differential Equations for Scientists and Engineers | 451 | Strauss W.A. — Partial Differential Equations: An Introduction | 48 | McEneaney W.M. — Max-Plus Methods for Nonlinear Control and Estimation | 187 | Krantz S.G. — Function Theory of Several Complex Variables | 27, 29, 30 | Duistermaat J.J., Kolk J.A.C. — Multidimensional Real Analysis II: Integration | 763 | Poeschel J. — Inverse Spectral Theory | 1 | Rudin W. — Functional analysis | 192 | Lin C.C., Segel L.A. — Mathematics Applied to Deterministic Problems in the Natural Sciences | 103—106, 160 | Kannan D. (ed.), Lakshmikantham V. (ed.) — Handbook of stochastic analysis and applications | 39 | Zauderer E. — Partial Differential Equations of Applied Mathematics | 370, 377 | Kato G., Struppa D.C. — Fundamentals of algebraic microlocal analysis | 98, 135, 241, 246, 249 | Prigogine I. — Nonequilibrium statistical mechanics | see “Green's, function” | Ohayo R. — Structural acoustics and vibration: mechanical models, variational formulations and discretization | 224 | Havin V.P., Nikolski N.K. (eds.) — Linear and Complex Analysis Problem Book 3 (part 2) | 12.1, 12.14 | Fulling S. — Aspects of Quantum Field Theory in Curved Spacetime | see “Green function”, “Resolvent” | Portela A., Charafi A. — Finite Elements Using Maple: A Symbolic Programming Approach | 109 | Mattheij R.M.M., Molenaar J. — Ordinary Differential Equations in Theory and Practice (Classics in Applied Mathematics) (No. 43) | 83 | Freund L.B. — Dynamic Fracture Mechanics | 342, 358 | Bogolubov N.N., Logunov A.A., Todorov I.T. — Introduction to Axiomatic Quantum Field Theory | 304—305 (see also “Green functions”) | Reed M., Simon B. — Methods of Modern mathematical physics (vol. 2) Fourier analysis, self-adjointness | 46 | Dijkstra H.A. — Nonlinear physical oceanography | 85 | Chan Man Fong C.F., De Kee D., Kaloni P.N. — Advanced Mathematics for Engineering and Sciences | 98, 441, 447 | Stakgold I. — Boundary Value Problems of Mathematical Physics | 48 | Hormander L. — The analysis of linear partial differential operators I | 80 | Ding H., Chen W., Zhang L. — Elasticity of Transversely Isotropic Materials | 78, 128, 375, 376, 378 | Kigami J. — Analysis on Fractals | 162, 7 | Kitahara M. — Boundary Integral Equation Methods in Eigenvalue Problems of Elastodynamics and Thin Plates | 17—22, 57, 67, 224—225 | Kral J. — Integral Operators in Potential Theory (Lecture Notes in Mathematics) | 2 | Nash C. — Differential Topology and Quantum Field Theory | 28 | Stakgold I. — Boundary value problems of mathematical physics | 48 | Wilmott P., Howison S., Dewynne J. — The Mathematics of Financial Derivatives : A Student Introduction | 73 | Friedlander F.G. — The Wave Equation on a Curved Space-Time | 52, 65 | Johnson C. — Numerical solution of partial differential equations by the finite element method | 216 | Yu Y. — Index Theorem and the Heat Equation Method | 85 | Stavroulakis I.P., Tersian S.A. — Partial Differential Equations: An Introduction with Mathematica and Maple | 180 | Prigogine I. — Monographs in Statistical Physics And Thermodynamics. Volume 1. Non-equilibrium statistical mechanics | (see Green’s function) | Aigner M. — Graph theory | 33 | Hermann R. — Differential geometry and the calculus of variations | 393 | Riley, Hobson — Mathematical Methods for Physics and Engineering | 691—693 | Courant R., Hilbert D. — Methods of Mathematical Physics. Volume 1 | 370 | Duistermaat J.J, Kolk J.A.C. — Distributions: theory and applications | 109 | Rauch J. — Partial differential equations | 85, 86, 104, §4.2 | Kythe P.K., Puri P. — Partial differential equations and Mathematica | 177 | Vladimirov V. S. — Equations of mathematical physics | 141, 147 | Collatz L. — The numerical treatment of differential equations | 27, 406 | Kashiwara M., Kawai T., Kimura T. — Foundations of Algebraic Analysis | 144 | McQuarrie D.A. — Statistical Mechanics | 387 | Adams D.R., Hedberg L.I. — Function spaces and potential theory | 8, 9, 47, 319 | Krantz S.G. — Function theory of several complex variables | 27, 29, 30 | Carroll R.W. — Mathematical physics | 19 | Rößler A. — Numerical Methods for Stochastic Differential Equations | (see Solution) | Tzenov S.I. — Contemporary Accelerator Physics | 19 | Mathews J., Walker R.L. — Mathematical methods of physics | 274 | Loomis L.H., Sternberg S. — Advanced calculus | 277 | Coffey W.T., Kalmykov Yu.P., Waldron J.T. — The Langevin equation | 85, 601, 611 | Anderssen R.S., de Hoog F.R., Lukas M.A. — The application and numerical solution of integral equations | 136, 141 | Iwasaki Katsunon, Kimura H., Shimomura S. — From Gauss to Painleve: A Modern Theory of Special Functions | 155 | Antes H., Panagiotopoulos P.D. — The boundary integral approach to static and dynamic contact problem | 46, 47, 74 | Virchenko N. — Generalized Associated Legendre Functions and Their Applications | 162 | Kanwal R.P. — Linear Integral Equations: Theory and Techniques | 96, 116 | Strang G. — Introduction to Applied Mathematics | 319, 347, 516, 540, 552, 558 | Behnke H., Bachmann F., Fladt K. — Fundamentals of mathematics. Volume III. Analysis | 315, 316, 317, 356 | Zeidler E. — Applied Functional Analysis: Applications to Mathematical Physics | 179, 182, 183, 186, 413 | Vafa C., Zaslow E. — Mirror symmetry | 555 | Vassiliev V.A. — Applied Picard-Lefschetz Theory | 142 | Von Grudzinski O. — Quasihomogeneous distributions | 317, 325, 327, 328, 330, 338, 340, 417—421 | John F. — Partial Differential Equations | 91, 92, 101, 102, 161, 186—190 | Wermer J. — Potential Theory | 20 | Lions J-L., Dautray R. — Mathematical Analysis and Numerical Methods for Science and Technology: Volume 2: Functional and Variational Methods | 183n | Kanwal R.P. — Generalized functions: Theory and technique | 39, 115, 217 ff | Ascher U., Petzold L. — Computer Methods for Ordinary Differential Equations and Differential-Algebraic Equations | 30, 166 | Balser W. — Formal Power Series and Linear Systems of Meromorphic Ordinary Differential Equations | 5 | Petzold L. — Computer Methods for Ordinary Differential Equations and Differential-Algebraic Equations | 26, 166 | Zorich V.A., Cooke R. — Mathematical analysis II | 469—470, 490 | Zorich V. — Mathematical Analysis | 469—470, 490 | Stakgold I. — Boundary value problems of mathematical physics | 54, 62, see also "Green's function" | Mathews J., Walker R.L. — Mathematical Methods of Physics | 274 | Lin C., Segel L. — Mathematics Applied to Deterministic Problems in the Natural Sciences | 103—106, 160 | Lin C., Segel L. — Mathematics Applied to Deterministic Problems in the Natural Sciences | 103—106, 160 | Lin C., Segel L. — Mathematics applied to deterministic problems in the natural sciences | 103—106, 160 | Colombeau J.-F. — Elementary Introduction to New Generalized Functions | 131 | Gripenberg G., Londen S.O., Staffans O. — Volterra integral and functional equations | 77, 301 | Constanda C. (ed.), Potapenko S.S. (ed.) — Integral Methods in Science and Engineering: Techniques and Applications | 141, 142, 209, 219, 239 | Constanda C., Potapenko S. — Integral Methods in Science and Engineering: Techniques and Applications | 141, 142, 209, 219, 239 | Constanda C. (ed.), Potapenko S. (ed.) — Integral methods in science and engineering | 141, 142, 209, 219, 239 |
|
|