Ýëåêòðîííàÿ áèáëèîòåêà
ìåõàíèêî-ìàòåìàòè÷åñêîãî ôàêóëüòåòà
Ìîñêîâñêîãî ãîñóäàðñòâåííîãî óíèâåðñèòåòà
Ãëàâíàÿ
Ex Libris
Êíèãè
Æóðíàëû
Ñòàòüè
Ñåðèè
Êàòàëîã
Wanted
Çàãðóçêà
ÕóäËèò
Ñïðàâêà
Ïîèñê ïî èíäåêñàì
Ïîèñê
Ôîðóì
Ìåõìàòÿíàì
Ïåðâûé êóðñ
Âòîðîé êóðñ
Òðåòèé êóðñ
×åòâåðòûé êóðñ
Ïÿòûé êóðñ
Àâòîðèçàöèÿ
Ïîèñê ïî óêàçàòåëÿì
Ðåçóëüòàò ïîèñêà
Ïîèñê êíèã, ñîäåðæàùèõ:
Jacobi polynomials
Êíèãà
Ñòðàíèöû äëÿ ïîèñêà
Kadison R.V., Ringrose J.R. — Fundamentals of the theory of operator algebras (vol. 1) Elementary Theory
97
Bell W.W. — Special Functions for scientists and engineers
198
Koepf W. — Hypergeometric Summation. An algorithmic approach to summation and special function identities.
120, 181
Andrews G., Askey R., Roy R. — Special Functions
99, 298, 475, 476
Graham R.L., Grotschel M., Lovasz L. — Handbook of combinatorics (vol. 1)
1988
Morse P., Feshbach H. — Methods of Theoretical Physics (part 1)
780
Morse P., Feshbach H. — Methods of Theoretical Physics (part 2)
780
Conte S.D., de Boor C. — Elementary numerical analysis - an algorithmic approach
317
Olver F.W.J. — Asymptotics and Special Functions
48—49, 52, 167
Dingle R. — Asymptotic Expansions: Their Derivation and Interpretation
45
Graham R.L., Grotschel M., Lovasz L. — Handbook of combinatorics (vol. 2)
1988
Polya G., Szego G. — Problems and Theorems in Analysis: Integral Calculus. Theory of Functions
III, 219, 147
Curtain R.F., Pritchard A.J. — Functional Analysis in Modern Applied Mathematics
61
Borwein P, Erdelyi T — Polynomials and polynomial inequalities
57, 63
Polyanin A., Manzhirov A.V. — Handbook of Mathematics for Engineers and Scientists
986
Goldberg M.A. (ed.) — Solution Methods for Integral Equations
103, 115
Jackson D. — Fourier Series and Orthogonal Polynomials
166—175, 200—201, 225—226
Rainville E.D. — Special Functions
167, 254—275, 276, 283, 296, 301
Khuri A.I. — Advanced calculus with applications in statistics
443
Gasper G., Rahman M. — Basic hypergeometric series
2
Milovanovic G.V., Mitrinovic D.S., Rassias T.M. — Topics in Polynomials: Extremal Problems, Inequalities, Zeros
37
van Eijndhoven S.J.L., de Greef J. — Trajectory Spaces, Generalized Functions and Llnbounded Operators
66
Phillips G.M. — Interpolation and Approximation by Polynomials
65
Kadison R.V., Ringrose J.R. — Fundamentals of the Theory of Operator Algebras (vol. 2) Advanced Theory
97
Nikiforov A.F., Uvarov V. — Special Functions of Mathematical Physics: A Unified Introduction with Applications
21, 393; also see “Classical orthogonal polynomials”
Bergeron F., Labelle G., Leroux P. — Combinatorial Species and Tree-like Structures
172, 184, 203—205,
Havin V.P., Nikolski N.K. (eds.) — Linear and Complex Analysis Problem Book 3 (part 2)
13.0, 13.2, 20.7
Erdelyi A. — Higher Transcendental Functions, Vol. 3
see “Polynomials”
Mishchenko M.I. — Scattering, Absorption, and Emission of Light by Small Particles
364
Natterer F. — The Mathematics of Computerized Tomography (Classics in Applied Mathematics)
100
Pope S.B. — Turbulent Flows
354
Shohat J. — The problem of moments
92
Bogolubov N.N., Logunov A.A., Todorov I.T. — Introduction to Axiomatic Quantum Field Theory
158, 341
Erdelyi A. — Higher Transcendental Functions, Vol. 2
164, 168 ff., 224, 226
Mehta M.L. — Random Matrices
354, 355
Graff K.F. — Wave motion in elastic solids
516
Antia H.M. — Numerical Methods for Scientists and Engineers
197
Wawrzynczyk A. — Group representations and special functions
207—236, 237, 279, 281, 653
Davies B. — Integral Transforms and Their Applications
335
Gilmore R. — Lie Groups, Lie Algebras and Some of Their Applications
54
Miller W. — Lie theory and special functions
100, 131, 164, 205, 211, 241, 327
Rose M.E. — Elementary theory of angular momentum
53
Bayin S.S. — Mathematical Methods in Science and Engineering
41
Grenander U. — Toeplitz Forms and Their Applications
102
Wigner E.P. — Group Theory and Its Applicaion to the Quantum Mechanics of Atomic Spectra
see Hypergeometric functions
Courant R., Hilbert D. — Methods of Mathematical Physics. Volume 1
90—91, 327—328
Rice J.R. — Linear Theory. Volume 1. The approximation of functions
36
Belotserkovsky S.M., Lifanov I.K. — Method of Discrete Vortices
194,209,385
Morse P.M. — Methods of theoretical physics
780
Kemble E. C. — The fundamental principles of quantum mechanics
234, 594, 595
Koepf W. — Hypergeometric summation. An algorithmic approach to summation and special function identities
120, 181
Mathews J., Walker R.L. — Mathematical methods of physics
194
Dunkl C.F., Xu Y. — Orthogonal Polynomials of Several Variables
21
Muller J.-M. — Elementary functions: algorithms and implementation
23
Kotz S., Johnson N.L. — Breakthroughs in Statistics: Volume 2: Methodology and Distribution
249
Hildebrand F.B. — Advanced Calculus for Applications
142, 184 (46)
Sofo A. — Computational Techniques for the Summation of Series
24
Krall A.M. — Hilbert Space, Boundary Value Problems, and Orthogonal Polynomials
148, 239, 263
Biedenharn L.C., Louck J.D. — Angular momentum in quantum physics
48, 52, 53, 66, 69, 205, 226, 352
Cohen G.L. — A Course in Modern Analysis and Its Applications
267
Natterer F., Wubbeling F. — Mathematical methods in image reconstruction
16
Villaggio P. — Mathematical models for elastic structures
146
Landau L.D., Lifshitz E.M. — Course of Theoretical Physics (vol.3). Quantum Mechanics. Non-relativistic Theory
219, 665
Mathews J., Walker R.L. — Mathematical Methods of Physics
194
Davies B. — Integral Transforms and their Applications
335
Dennery P., Krzywicki A. — Mathematics for Physicists
207, 212
Srivastava H.M., Manocha H.L. — A Treatise on Generating Functions
9, 16, 71, 89, 100, 125, 126, 131, 152, 155, 156, 200, 243, 353, 388, 389, 403, 409, 412, 420, 432, 442, 449, 453, 455, 471, 473, 497
©
Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ
, 2004-2024
|
|
Î ïðîåêòå