Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
Ìåõìàòÿíàì
square Ïåðâûé êóðñ

square Âòîðîé êóðñ

square Òðåòèé êóðñ

square ×åòâåðòûé êóðñ

square Ïÿòûé êóðñ
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
Êðàñîòà
blank
blank
Ðåçóëüòàò ïîèñêà

Ïîèñê êíèã, ñîäåðæàùèõ: Jacobi polynomials



ÊíèãàÑòðàíèöû äëÿ ïîèñêà
Kadison R.V., Ringrose J.R. — Fundamentals of the theory of operator algebras (vol. 1) Elementary Theory97
Bell W.W. — Special Functions for scientists and engineers198
Koepf W. — Hypergeometric Summation. An algorithmic approach to summation and special function identities.120, 181
Andrews G., Askey R., Roy R. — Special Functions99, 298, 475, 476
Graham R.L., Grotschel M., Lovasz L. — Handbook of combinatorics (vol. 1)1988
Morse P., Feshbach H. — Methods of Theoretical Physics (part 1)780
Morse P., Feshbach H. — Methods of Theoretical Physics (part 2)780
Conte S.D., de Boor C. — Elementary numerical analysis - an algorithmic approach317
Olver F.W.J. — Asymptotics and Special Functions48—49, 52, 167
Dingle R. — Asymptotic Expansions: Their Derivation and Interpretation45
Graham R.L., Grotschel M., Lovasz L. — Handbook of combinatorics (vol. 2)1988
Polya G., Szego G. — Problems and Theorems in Analysis: Integral Calculus. Theory of FunctionsIII, 219, 147
Curtain R.F., Pritchard A.J. — Functional Analysis in Modern Applied Mathematics61
Borwein P, Erdelyi T — Polynomials and polynomial inequalities57, 63
Polyanin A., Manzhirov A.V. — Handbook of Mathematics for Engineers and Scientists986
Goldberg M.A. (ed.) — Solution Methods for Integral Equations103, 115
Jackson D. — Fourier Series and Orthogonal Polynomials166—175, 200—201, 225—226
Rainville E.D. — Special Functions167, 254—275, 276, 283, 296, 301
Khuri A.I. — Advanced calculus with applications in statistics443
Gasper G., Rahman M. — Basic hypergeometric series2
Milovanovic G.V., Mitrinovic D.S., Rassias T.M. — Topics in Polynomials: Extremal Problems, Inequalities, Zeros37
van Eijndhoven S.J.L., de Greef J. — Trajectory Spaces, Generalized Functions and Llnbounded Operators66
Phillips G.M. — Interpolation and Approximation by Polynomials65
Kadison R.V., Ringrose J.R. — Fundamentals of the Theory of Operator Algebras (vol. 2) Advanced Theory97
Nikiforov A.F., Uvarov V. — Special Functions of Mathematical Physics: A Unified Introduction with Applications21, 393; also see “Classical orthogonal polynomials”
Bergeron F., Labelle G., Leroux P. — Combinatorial Species and Tree-like Structures172, 184, 203—205,
Havin V.P., Nikolski N.K. (eds.) — Linear and Complex Analysis Problem Book 3 (part 2)13.0, 13.2, 20.7
Erdelyi A. — Higher Transcendental Functions, Vol. 3see “Polynomials”
Mishchenko M.I. — Scattering, Absorption, and Emission of Light by Small Particles364
Natterer F. — The Mathematics of Computerized Tomography (Classics in Applied Mathematics)100
Pope S.B. — Turbulent Flows354
Shohat J. — The problem of moments92
Bogolubov N.N., Logunov A.A., Todorov I.T. — Introduction to Axiomatic Quantum Field Theory158, 341
Erdelyi A. — Higher Transcendental Functions, Vol. 2164, 168 ff., 224, 226
Mehta M.L. — Random Matrices354, 355
Graff K.F. — Wave motion in elastic solids516
Antia H.M. — Numerical Methods for Scientists and Engineers197
Wawrzynczyk A. — Group representations and special functions207—236, 237, 279, 281, 653
Davies B. — Integral Transforms and Their Applications335
Gilmore R. — Lie Groups, Lie Algebras and Some of Their Applications54
Miller W. — Lie theory and special functions100, 131, 164, 205, 211, 241, 327
Rose M.E. — Elementary theory of angular momentum53
Bayin S.S. — Mathematical Methods in Science and Engineering41
Grenander U. — Toeplitz Forms and Their Applications102
Wigner E.P. — Group Theory and Its Applicaion to the Quantum Mechanics of Atomic Spectrasee Hypergeometric functions
Courant R., Hilbert D. — Methods of Mathematical Physics. Volume 190—91, 327—328
Rice J.R. — Linear Theory. Volume 1. The approximation of functions36
Belotserkovsky S.M., Lifanov I.K. — Method of Discrete Vortices194,209,385
Morse P.M. — Methods of theoretical physics780
Kemble E. C. — The fundamental principles of quantum mechanics234, 594, 595
Koepf W. — Hypergeometric summation. An algorithmic approach to summation and special function identities120, 181
Mathews J., Walker R.L. — Mathematical methods of physics194
Dunkl C.F., Xu Y. — Orthogonal Polynomials of Several Variables21
Muller J.-M. — Elementary functions: algorithms and implementation23
Kotz S., Johnson N.L. — Breakthroughs in Statistics: Volume 2: Methodology and Distribution249
Hildebrand F.B. — Advanced Calculus for Applications142, 184 (46)
Sofo A. — Computational Techniques for the Summation of Series24
Krall A.M. — Hilbert Space, Boundary Value Problems, and Orthogonal Polynomials148, 239, 263
Biedenharn L.C., Louck J.D. — Angular momentum in quantum physics48, 52, 53, 66, 69, 205, 226, 352
Cohen G.L. — A Course in Modern Analysis and Its Applications267
Natterer F., Wubbeling F. — Mathematical methods in image reconstruction16
Villaggio P. — Mathematical models for elastic structures146
Landau L.D., Lifshitz E.M. — Course of Theoretical Physics (vol.3). Quantum Mechanics. Non-relativistic Theory219, 665
Mathews J., Walker R.L. — Mathematical Methods of Physics194
Davies B. — Integral Transforms and their Applications335
Dennery P., Krzywicki A. — Mathematics for Physicists207, 212
Srivastava H.M., Manocha H.L. — A Treatise on Generating Functions9, 16, 71, 89, 100, 125, 126, 131, 152, 155, 156, 200, 243, 353, 388, 389, 403, 409, 412, 420, 432, 442, 449, 453, 455, 471, 473, 497
blank
HR
@Mail.ru
© Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2024
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01!| Valid CSS! Î ïðîåêòå