| Êíèãà | Ñòðàíèöû äëÿ ïîèñêà |
| Kadison R.V., Ringrose J.R. — Fundamentals of the theory of operator algebras (vol. 1) Elementary Theory | 41, 174 |
| Taylor M.E. — Partial Differential Equations. Basic theory (vol. 1) | 487 |
| Hunter J.K., Nachtergaele B. — Applied Analysis | 39 |
| Henrici P. — Applied and Computational Complex Analysis. I: Power Series, Integration, Conformal Mapping, Location of Zeros. | 71, 72, 77, 81, 87, 89, 90, 90, 92, 93, 95, 99, 101, 103, 133, 143 |
| Garnett J.B. — Bounded Analytic Functions | 182 |
| Hewitt E., Ross K.A. — Abstract Harmonic Analysis (Vol. 1) | 469 |
| Rudin W. — Real and Complex Analysis | 149, 192, 351 |
| Hewitt E., Ross K.A. — Abstract Harmonic Analysis (Vol. 2) | 469 I |
| Rosenberg J. — Algebraic K-Theory and Its Applications | remarks following 1.6.5, 3.3.8 |
| Bachman G. — Introduction to p-Adic Numbers and Valuation Theory | 111 |
| Katznelson Y. — Introduction to Harmonic Analysis | 194 |
| Landsman N.P. — Mathematical topics between classical and quantum mechanics | 39 |
| Folland J.B. — Real Analysis: Modern Techniques and Their Applications | 154 |
| Douglas R.G. — Banach algebra techniques in operator theory | 34, 32—62 |
| Adams R.A. — Sobolev Spaces | 115 |
| Katznelson Y. — Introduction to Harmonic Analysis | 209 |
| Gracia-Bondia J.M., Varilly J.C., Figueroa H. — Elements of Noncommutative Geometry | 4, 27, 135, 448, 469 |
| Garnett J.B. — Bounded Analytic Functions | 176 |
| Reich S., Shoikhet D. — Nonlinear Semigroups, Fixed Points, and Geometry of Domains in Banach Spaces | 28 |
| Arveson W. — A Short Course on Spectral Theory | 8 |
| Lam T.Y. — A first course in noncommutative ring theory | 85—86, 90 |
| Lindner M. — Infinite Matrices and their Finite Sections: An Introduction to the Limit Operator Method | 2 |
| Szkelyhidi L. — Discrete Spectral Synthesis and Its Applications | 3, 4, 7 |
| Berberian S.K. — Fundamentals of Real Analysis | 331, 352 |
| Wilansky A. — Modern Methods in Topological Vector Spaces | 71, 106, 148 |
| Baez J.C., Segal I.E., Zhou Z. — Introduction to algebraic and constructive quantum field theory | 258 |
| Rickart C.E. — General Theory of Banach Algebras | 2 |
| Streater R.F. (Ed) — Mathematics of Contemporary Physics | 48 |
| Rudin W. — Functional analysis | 228 |
| Rall D. — Computational Solution to Nonlinear Operator Equations | 94, 173 |
| Eidelman Y., Milman V., Tsolomitis A. — Functional Analysis. An Introduction | 167 |
| Lang S. — Real Analysis | 70 |
| Taylor J.C. — An Introduction to Measure and Probability | 134 |
| Nagel R., Derdinger R., Günther P. — Ergodic theory in the perspective of functional analysis | II/8 |
| Rudin W. — Real and complex analysis | 190, 356 |
| Dieudonne J.A. — Treatise on Analysis, Vol. 2 | 15.1 |
| Kadison R.V., Ringrose J.R. — Fundamentals of the Theory of Operator Algebras (vol. 2) Advanced Theory | 41, 174 |
| Bingham N.H., Goldie C.M., Teugels J.L. — Regular variation | 231—232, 261—262, 367—368 |
| Köthe G. — Topological vector spaces I | 130 |
| Kirillov A.A. — Elements of the Theory of Representations | 45 |
| Graham C.C., McGehee O.C. — Essays in Commutative Harmonic Analysis | see “Algebra” |
| Hu S.-T. — Elements of real analysis | 215 |
| Monk J.D., Bonnet R. — Handbook Of Boolean Algebras Vol.3 | 905 |
| Aczel J., Dhombres J. — Functional equations in several variables with applications to mathematics, information theory and to the natural and social sciences | 93, 149, 153, 155, 225, 331, 338, 339 |
| Hazewinkel M. — Handbook of Algebra (part 2) | 153 |
| Böttcher A., Grudsky S.M. — Spectral Properties of Banded Toeplitz Matrices | 240 |
| Simmons G.F. — Introduction to topology and modern analysis | 302 |
| Phillips N.Ch. — Equivariant K-Theory and Freeness of Group Actions on C*-Algebras | 3, 12, 15—22, 28—34, 36—38, 41, 55, 58, 69 |
| Conway J.B. — A Course in Functional Analysis | 191 |
| Saxe K. — Beginning functional analysis | 99 |
| Lang S. — Real and Functional Analysis (Graduate Texts in Mathematics Series #142) | 73 |
| Korevaar J. — Tauberian Theory: A Century of Developments | 85, 236 |
| Larsen R. — Banach algebras: An Introduction | 4 |
| Ya Helemskii A., West A. — Banach and locally convex algebras | 64 |
| Goffman C., Pedrick G. — First course in functional analysis | 248 |
| Kreyszig E. — Introductory functional analysis with applications | 395 |
| Przeworska-Rolewicz D., Rolewicz S. — Equations in linear spaces | 238 |
| Semadini Z. — Banach Spaces of Continuous Functions. Vol. 1 | 50 |
| Choquet-Bruhat Y., DeWitt-Morette C., Dillard-Bleick M. — Analysis, manifolds and physics. Part I. | 59 |
| Gelbaum B.R. — Problems in Real and Complex Analysis | 6.4. 89, s 6.1 321 |
| Douglas R.G. — Banach algebra techniques in operator theory | 34, 32—62 |
| Loomis L.H. — An introduction to abstract harmonic analysis | 16, 48 |
| Bourgain J. — New Classes of Lp-Spaces | 6 |
| Bhatia R. — Fourier Series (Mathematical Association of America Textbooks) | 89 |
| Hewitt E., Stromberg K. — Real and abstract analysis: a modern treatment of the theory of functions of a real variable | 84 |
| Bachman G. — Elements of Abstract Harmonic Analysis | 25 |
| Silverman J. — The arithmetic of dynamical systems | 298 |
| Loomis L.H., Sternberg S. — Advanced calculus | 223 |
| Gierz G. — Bundles of Topological Vector Spaces and Their Duality | 8 |
| Zeidler E. — Applied Functional Analysis: Applications to Mathematical Physics | 76 |
| Miller S.S., Mocanu P.T. — Differential subordinations: theory and applications | 375 |
| Haag R. — Local quantum physics: fields, particles, algebras | 118 |
| Pier J.-P. — Mathematical Analysis during the 20th Century | 99 |
| Collatz L. — Functional analysis and numerical mathematics | 32 |
| Margalef-Roig J., Outerelo Dominguez E. — Differential topology | 286 |
| Gohberg I., Goldberg S., Kaashoek M. — Classes of linear operators. (volume 2) | 788 |
| Fritzsche K., Grauert H. — From Holomorphic Functions To Complex Manifolds | 105 |
| Wallach N.R. — Real Reductive Groups II | 265 |
| Lions J-L., Dautray R. — Mathematical Analysis and Numerical Methods for Science and Technology: Volume 2: Functional and Variational Methods | 318n |
| Choquet-Bruhat Y., Dewitt-Morette C. — Analysis, manifolds and physics | 59 |
| Gripenberg G., Londen S.O., Staffans O. — Volterra integral and functional equations | 228 |