|
|
Ðåçóëüòàò ïîèñêà |
Ïîèñê êíèã, ñîäåðæàùèõ: Thermodynamic limit
Êíèãà | Ñòðàíèöû äëÿ ïîèñêà | Sornette D. — Critical phenomena in natural sciences | | Gomez C., Ruiz-Altaba M., Sierra G. — Quantum Groups in Two-Dimensional Physics | 17, 73, 75, 83, 103, 104, 153, 159 | Ito K. — Encyclopedic Dictionary of Mathematics. Vol. 2 | 402.G | Di Francesco P., Mathieu P., Senechal D. — Conformal field theory | 62 | Grimmett G. — Percolation | 395 | Huang K. — Statistical Mechanics | 206, 207 | Honerkamp J. — Statistical Physics | 48 | Bovier A., Gill R. (Ed), Ripley B.D. (Ed) — Statistical Mechanics of Disordered Systems: A Mathematical Perspective | 21 | Palmer J. — Planar Ising Correlations | vi | Winkler G. — Choquet Order and Simplices | 114 | Fradkin E. — Field theories of condensed matter systems | 217 | Friedlander S.J. (Ed), Serre D. (Ed) — Handbook of Mathematical Fluid Dynamics, Vol. 3 | 9 | Eschrig H. — The Fundamentals of Density Functional Theory | 33, 56—59, 93 | Imry Y. — Introduction to Mesoscopic Physics | 1, 61—62, 68 | Yeomans J.M. — Statistical Mechanics of Phase Transitions | 67, 71 | Domb C., Green M.S. (eds.) — Phase Transitions and Critical Phenomena (Vol. 1) | 10, 11, 14, 17, 23, 25, 29, 31, 32, 37, 38, 39, 40, 41, 42, 50, 51, 52, 53, 55, 58, 60, 63, 65, 75, 76, 77, 82, 88, 89, 92, 94, 95, 96, 97, 99, 101, 143, 144, 145, 146, 147, 151, 152, 155, 157, 163, 165, 166, 168, 170, 171, 180, 183, 185, 186, 187, 203, 205, 214, 345, 355 | Streater R.F. (Ed) — Mathematics of Contemporary Physics | 145, 157, 158, 160, 210, 216, 220, 224 | Isihara A. — Statistical physics | 137, 378 | Dorlas T.C. — Statistical mechanics, fundamentals and model solutions | 27, 128, 139 | Domb C., Lebowitz J.L. — Phase Transitions and Critical Phenomena (Vol. 19) | 67, 110, 119, 120, 131—134, 138—139, 212 | Ito K. — Encyclopedic Dictionary of Mathematics | 402.G | Bratteli O., Robinson D.W. — Operator Algebras and Quantum Statistical Mechanics (vol. 1) | 10,11,13 | Dalvit D.A.R., Frastai J., Lawrie I.D. — Problems on statistical mechanics | 3.2, 3.5, 3.6, 3.30, 4.12, 5.2, 5.11 | Cowan B. — Topics In Statistical Mechanics | 3, 4, 23, 63, 144 | Balian R. — From Microphysics to Macrophysics: Methods and Applications of Statistical Physics (vol. 1) | see “Extensivity” | Bratteli O., Robinson D.W. — Operator Algebras and Quantum Statistical Mechanics (vol. 2) | 10, 11, 13, 3, 49—57, 63, 67, 74, 75, 86, 109, 220, 260, 298, 366, 372, 381—383, 391—395, 401, 417, 423, 438, 442, 454 | Fetter A.L., Walecka J.D. — Quantum theory of many-particle systems | 22, 75, 78, 199, 489 | Kleinert H., Schulte-Frohlinde — Critical Properties of (Phi)P4-Theories | 58 | Schulman L.S. — Techniques and applications of path integration | 264 | ter Haar D. — Elements of Statistical Mechanics | 317, 330 | L. Pitaevskii, Stringari S. — Bose-Einstein Condensation | 155, 222-5 | Mackey M.C. — Time's arrow: the origins of thermodynamic behavior | 5 | Daniel C. Mattis — The theory of magnetism made simple: an introduction to physical concepts and to some useful mathematical methods | 344, 346, 348, 351, 371, 381, 384, 385, 395, 397, 401, 407, 422, 441, 447, 474, 475, 494, 503 | Prigogine I. — From being to becoming: time and complexity in the physical sciences. | 28, 141, 190 | Berne B. — Statistical Mechanics. Part A: Equilibrium Techniques | 108, 117 | Pathria P.K. — Statistical Mechanics | 9, 62, 307, 308, 309, 310 | Amit D.J. — Field theory, the renormalization group, and critical phenomena | 279 | Attard P. — Therodynamics and Statistical Mechanics: Equilibrium by Entropy Maximisation | 32 | Hughes B.D. — Random walks and random enviroments (Vol. 1. Random walks) | 523 | Goldenfeld N. — Lectures on Phase Transitions and the Renormalization Group | 17, 26 | Gallavotti G. — Statistical Mechanics | 20, 22, 26, 27, 62, 65, 71, 78, 106, 121, 148, 156 | Domb C.M., Green M. — Phase Transitions and Critical Phenomena: Series Expansion for Lattice Models, Vol. 3 | 45, 47, 71, 84, 369, 371, 372, 378, 398 | Gallavotti G. — Foundations of fluid mechanics | 350 | Itzykson C., Drouffe J-M. — Statistical field theory. Vol. 1 | 23 | Roepstorf G. — Path integral approach to quantum physics | 82, 179, 244 | Ruelle D. — Statistical Mechanics | 2 | Alicki R., Lendi K. — Quantum Dynamical Semigroups And Applications | 13, 25, 44 | Thirring W., Harrell E.M. — Quantum Mathematical Physics. Atoms, Molecules and Large many-body Systems | 355 | Hoover W.G. — Molecular Dynamics | 12, 117 | Haag R. — Local quantum physics: fields, particles, algebras | 199 | Salmhofer M. — Renormalization: an introduction | 12, 114, 183 | Haile J.M. — Molecular Dyanmics Simualtion: Elementary Methods | 65, 70, 137—138, 214—215, 253, 270 | Minlos R.A. — Introduction to Mathematical Statistical Physics | 9, 12, 13, 17, 18, 21, 22, 24, 27, 40 | Binder K., Heermann D.W. — Monte Carlo Simulation in Statistical Physics | 42, 45 | Drmota M., Flajolet P., Gardy D. — Mathematics and computer science 3. Algorithms, trees, combinatorics and probabilities | 415 | Kardar M. — Statistical physics of fields | 2, 9 | Glimm J., Jaffe A. — Quantum Physics: A Functional Integral Point of View | 22, 32, 34 | Morandi G. — Statistical Mechanics: An Intermediate Course | 1—4, §18 | ter Haar D. — Elements of Statistical Mechanics | 317, 330 | Kleinert H. — Gauge fields in condensed matter (part 2) | 164 | Mackey G. — Unitary Group Representations in Physics, Probability and Number Theory | 302 | Meyer-Ortmanns H., Reisz T. — Principles of phase structures in particle physics | 4, 46, 92, 211 | Reichl L.E. — Modern Course in Statistical Physics | 347—348, 356, 481 | Fetter A.L., Walecka J.D. — Quantum theory of many-particle systems | 22, 75, 78, 199, 489 | Badii R., Politi A. — Complexity: Hierarchical structures and scaling in physics | 58, 121, 133, 142 | Lipparini E. — Modern many-particle physics: atomic gases, quantum dots and quantum fluids | 255 | Plischke M., Bergersen B. — Equilibrium statistical physics | 2, 34, 35, 78, 79, 257, 276, 365, 368, 384, 388, 389, 399, 419, 531 | Lindblat G. — Non-equilibrium entropy and irreversibility | 40, 89 | Honerkamp J. — Statistical physics: an advanced approach with applications | 48 | Ferziger J.H., Kaper H.G. — Mathematical theory of transport processes in gases | 38 | Rosser W.G.V. — An introduction to statistical physics | 5, 73, 81 |
|
|