|
|
Результат поиска |
Поиск книг, содержащих: Wallis, John
Книга | Страницы для поиска | Apostol T.M. — Calculus (vol 1) | 3 | Apostol T.M. — Calculus (vol 2) | 616 | Ito K. — Encyclopedic Dictionary of Mathematics. Vol. 2 | 20 265 332 App. A, Table 10.VI | Rockett A.M., Szusz P. — Continued Fractions | 64 | Graham R.L., Knuth D.E., Patashnik O. — Concrete mathematics | 599, 604 | Coxeter H.S.M. — Non-Euclidean Geometry | 2 | Hille E. — Ordinary Differential Equations in the complex domain | 233 | Pesic P. — Abel's Proof: An Essay on the Sources and Meaning of Mathematical Unsolvability | 186n | Ewald W. — From Kant to Hilbert, Vol.2 | 17, 70, 114, 154, 155, 307, 401, 419, 559 | Kline M. — Mathematics in Western Culture | 244 | Ewald W. — From Kant to Hilbert, Vol.1 | 17, 70, 114, 154, 155, 307, 401, 419, 559 | Seltman M. (ed.), Goulding R. (ed.) — Thomas Harriot's Artis Analyticae PRAXIS: An English Translation with Commentary | 4, 9, 233, 236, 238 | Kline M. — Mathematical Thought from Ancient to Modern Times, Vol. 1 | 396—398 | Stillwell J. — Yearning for the Impossible: The Surprising Truths of Mathematics | 98 | Wapner L. — The Pea and the Sun: A Mathematical Paradox | 7 | Knuth D.E. — The art of computer programming (vol. 2 Seminumerical Algorithms) | 199, 655 | Kline M. — Mathematical Thought from Ancient to Modern Times, Vol. 3 | 396—398 | National Council of Teachers of Mathematics — Historical Topics for the Mathematics Classroom Thirty-First Yearbook | [103], 114, 145, 152, 153, 208, 213, 244, 263, 269, 292, 331, 387, 388, 392, 413—415, 447 | Fishbane P.M. — Physics For Scientists and Engineers with Modern Physics | 214 | Kline M. — Mathematical Thought from Ancient to Modern Times, Vol. 2 | 396—398 | von zur Gathen J., Gerhard J. — Modern computer algebra | 596 | von zur Gathen J., Gerhard J. — Modern computer algebra | 596 | Knuth D.E. — The art of computer programming (Vol. 1. Fundamental algorithms) | 22 | Knuth D.E. — The art of computer programming (Vol. 2. Seminumerical algorithms) | 182—183 | Kasner E., Newman J. — Mathematics and the Imagination | 75—76, 78, 118 | Olds C.D. — Continued Fractions | 30, 135 | Knuth D.E. — The art of computer programming (vol. 3 Sorting and Searching) | 24 | Heath T.L. (ed.) — Thirteen Books of Euclid's Elements, Vol. 1 | 103 | Dewdney A.K. — Beyond reason. 8 great problems that reveal the limits of science | 118—119 | Aczel A.D. — God's Equation: Einstein, Relativity, and the Expanding Universe | 50 | Knuth D.E. — The art of computer programming (vol. 1 Fundаmental algorithms) | 22, 52 | Hellman H. — Great Feuds in Mathematics: Ten of the Liveliest Disputes Ever | 45, 53, 59—62, 69 | Rosenfeld B.A. (Author), Shenitzer A. (Translator), Grant H. (Assistant) — A history of non-Euclidean geometry: evolution of the concept of a geometric space | 80, 97—98, 169, 176—177 | Gardner M. — Knotted Doughnuts and Other Mathematical Entertainments | 15 | Struik D.J. — A concise history of mathematics. Volume 2 | 136, 138, 141, 142, 150 | Tietze H. — Famous Problems of Mathematics Solved and Unsolved | 101 | Kazarinoff N. — Analytic inequalities | 47, 48, 65 | Heath T.L. (ed.) — Thirteen Books of Euclid's Elements, Vol. 3 | I. 103 | Kasner E., Newman J. — Mathematics and the imagination | 75—76, 78, 118 | Carus P. — The Foundations of Mathematics. A Contribution to the Philosophy of Geometry | 71f | Katz V.J. — A History of Mathematics: An Introduction | 485, 88, 495—496, 504, 521 | Dershowitz N. — Calendrical Calculations | 116 | Ewald W.B. — From Kant to Hilbert: A source book in the foundations of mathematics. Volume 2 | 17, 70, 114, 154, 155, 307, 401, 419, 559 | Flegg G., Hay C., Moss B. — Nicolas Chuquet, Renaissance Mathematician | 18, 348, 350—352, 357 | Apostol T.M. — Calculus (Volume 2): Multi-Variable Calculus and Linear Algebra with Applications | 616 | Zeidler E. — Oxford User's Guide to Mathematics | 709 | Dorrie H. — 100 Great Problems of Elementary Mathematics: Their History and Solution | 86 | Polya G. — Mathematical Discovery: On Understanding, Learning and Teaching Problem Solving Combined Edition | 1 91 | Ifrah G., Bellos D. — The Universal History of Numbers: From Prehistory to the Invention of the Computer | 91, 361—362, 597 | Kline M. — Mathematics for the Nonmathematician | 368 | Muir J. — Of Men and Numbers: The Story of the Great Mathematicians | 103 | Ewald W.B. — From Kant to Hilbert: A source book in the foundations of mathematics. Volume 1 | 17, 70, 114, 154, 155, 307, 401, 419, 559 | Mach E. — The Principles of Physical Optics: An Historical and Philosophical Treatment | 272, 273 | Odifreddi P., Sangalli A., Dyson F. — The Mathematical Century: The 30 Greatest Problems of the Last 100 Years | 34, 46 | Jammer M. — Concepts of space: The history of theories of space in physics | 145 | Kline M. — Mathematical thought from ancient to modern times | 396, 398 | Brezinski C. — History of Continued Fractions and Padé Approximants | 33, 37, 45, 51, 72, 77, 83, 84, 89, 94, 98, 101, 102, 104, 112, 113, 121, 122, 126, 144, 147, 458, 467 | Gardner M. — Knotted Doughnuts and Other Mathematical Entertainments | 15 | Wells D. G. — You are a mathematician: a wise and witty introduction to the joy of numbers | 52 | Sondheimer E., Rogerson A. — Numbers and Infinity: A Historical Account of Mathematical Concepts | 47, 118 |
|
|