Êíèãà | Ñòðàíèöû äëÿ ïîèñêà |
Taylor M.E. — Partial Differential Equations. Basic theory (vol. 1) | 196, 288, 344 |
Taylor M.E. — Partial Differential Equations. Qualitative studies of linear equations (vol. 2) | 39 |
Ito K. — Encyclopedic Dictionary of Mathematics. Vol. 2 | 193.F 323.F |
Borisenko A.I., Tarapov I.E. — Vector and Tensor Analysis with Applications | 222 |
Ames W.F. — Numerical methods for Partial Differential Equations | 94 |
Rogers C., Ames W.F. — Nonlinear boundary value problems in science and engineering | 104, 105 |
Donaldson K., Kronheimer P.B. — Geometry of Four-Manifolds | 192 |
Henrici P. — Applied and Computational Complex Analysis (Vol. 3) | 263, 264, 265, 266, 267, 268, 269, 270, 286, 490, 494 |
Bergman S. — The Kernel Function and Conformal Mapping | 53, 112 |
Axler S., Bourdon p., Ramey W. — Harmonic function theory | 108 |
Pommerenke C. — Univalent functions (Studia mathematica) | 302 |
Showalter R.E. — Monotone Operators in Banach Space and Nonlinear Partial Differential Equations | 1, 20, 62 |
Kundu P.K., Cohen I.R. — Fluid mechanics | 176 |
Ladyzhenskaya O.A. — Mathematical theory of viscous incompressible flow | 24 |
Chorin A., Marsden J. — A Mathematical Introduction to Fluid Mechanics | 37, 49, 63 |
Debnath L., Mikusinski P. — Introduction to Hilbert Spaces with Applications | 298 |
Polyanin A., Manzhirov A.V. — Handbook of Mathematics for Engineers and Scientists | 429 |
Debnath L. — Linear Partial Differential Equations for Scientists and Engineers | 331, 341, 430 |
Gallot S., Hulin D. — Riemannian Geometry | 4.41, 4.68. |
Tarkhanov N.N. — Cauchy Problem for Solutions of Elliptic Equations | 342 |
Ablowitz M.J., Fokas A.S. — Complex Variables: Introduction and Applications | 40, 326 |
Kline M. — Mathematical Thought from Ancient to Modern Times, Vol. 1 | 685 |
Agoshkov V.I., Dubovsky P.B. — Methods for Solving Mathematical Physics Problems | 34, 40, 48 |
Duistermaat J.J., Kolk J.A.C. — Multidimensional Real Analysis II: Integration | 752 |
Shiryaev A., Peskir G. — Optimal Stopping and Free-Boundary Problems | 134, 135 |
Friedlander S. (Ed), Serre D. (Ed) — Handbook of Mathematical Fluid Dynamics, Vol. 4 | 578 |
Egorov Y.U. (Ed), Gamkrelidze R.V. (Ed) — Partial Differential Equations I: Foundations of the Classical Theory | 87 |
Meyer Y., Coifman R. — Wavelets. Calderon-Zygmund and multilinear operators | 1, 258 |
Arnold V.I., Khesin B.A. — Topological methods in hydrodynamics | 136 |
Lifanov I.K., Poltavskii L.N., Vainikko G.M. — Hypersingular integral equations and their applications | 95, 283, 376 |
Kline M. — Mathematical Thought from Ancient to Modern Times, Vol. 3 | 685 |
Lin C.C., Segel L.A. — Mathematics Applied to Deterministic Problems in the Natural Sciences | 573 |
Ito K. — Encyclopedic Dictionary of Mathematics | 193.F, 323.F |
Audin M. — Spinning Tops: A Course on Integrable Systems | 5, 9 |
Stakgold I. — Green's Functions and Boundary Value Problems | 519 |
Kline M. — Mathematical Thought from Ancient to Modern Times, Vol. 2 | 685 |
Aubin T. — Nonlinear Analysis on Manifolds: Monge-Ampere Equations | 88 |
Goldber M.A. (ed.) — Numerical Solution of Integral Equations | 4, 25 |
Courant R., Hilbert D. — Methods of Mathematical Physics, Vol. 2 | 329 |
Hanna J.R., Rowland J.H. — Fourier Series, Transforms, and Boundary Value Problems | 248 |
Guiseppe Da Prato — Stochastic equations in infinite dimensions | 200 |
Asmar N.H. — Partial Differential Equations with fourier series and boundary value problems | 441, 442, 618, 619, 684 |
Stratton J.A. — Electromagnetic Theory | 461 |
Egorov Yu.V. (Ed), Shubin M.A. (Ed) — Partial Differential Equations II: Elements of the Modern Theory. Equations with Constant Coefficients | 225 |
Stakgold I. — Boundary Value Problems of Mathematical Physics | 126, 128, 171, 185 |
Egorov Y.V., Shubin M.A. — Partial Differential Equations I (Foundations of the Classical) | 87 |
Egorov Y.V. (Ed), Shubin M.A. (Ed) — Partial Differential Equations II: Elements of the Modern Theory. Equations with Constant Coefficients | 225 |
Kitahara M. — Boundary Integral Equation Methods in Eigenvalue Problems of Elastodynamics and Thin Plates | 52, 113 |
Kral J. — Integral Operators in Potential Theory (Lecture Notes in Mathematics) | 3, 146 |
Buser P. — Geometry and spectra of compact riemann surfaces | 215 |
Nash C. — Differential Topology and Quantum Field Theory | 128 |
Tsang L., Kong J.A., Ding K.- H. — Scattering of electromagnetic waves (Vol 1. Theories and applications) | 390, 391, 403 |
Stakgold I. — Boundary value problems of mathematical physics | 126, 128, 171, 185—191 |
Tannehill J.C., Pletcher R.H., Anderson D.A. — Computational Fluid Mechanics and Heat Transfer | 34 |
Korner T.W. — Exercises in Fourier Analysis | 107—110 |
Johnson C. — Numerical solution of partial differential equations by the finite element method | 40 |
Prilepko A.I., Orlovsky D.G., Vasin I.A. — Methods for Solving Inverse Problems in Mathematical Physics | 367 |
Sneddon I.N. — Mixed boundary value problems in potential theory | 1 |
Cordes H. — Elliptic Pseudo-Differential Operators - An Abstract Theory | 195 |
Shilov G.E. — An introduction to the theory of linear spaces | 300 |
Mikhlin S.G., Prossdorf S. — Singular Integral Operators | 185 |
Nehari Z. — Conformal mapping | 25, 31 |
Mandel L., Wolf E. — Optical Coherence and Quantum Optics | 126 |
Rauch J. — Partial differential equations | 188, 191, 193, 206, 224—225, 244 |
Stratton J.A. — Electromagnetic Theory | 461 |
Choquet-Bruhat Y., DeWitt-Morette C., Dillard-Bleick M. — Analysis, manifolds and physics. Part I. | 503, 509 |
Hildebrand F.B. — Methods of Applied Mathematics | 178, 310(38) |
Belotserkovsky S.M., Lifanov I.K. — Method of Discrete Vortices | 412—417,421,423,see also "Dirichlet and Neumann problems" |
Fox L., Parker I.B. — Chebyshev Polynomials in Numerical Analysis | 171 |
Taylor M.E. — Partial Differential Equations. Nonlinear Equations (vol. 3) | 290, 487 |
Carroll R.W. — Mathematical physics | 66 |
Stakgold I. — Green's functions and boundary value problems | 519 |
Rektorys K. (ed.) — Survey of Applicable Mathematics | 886 |
Schaaf R. — Global Solution Branches of Two Point Boundary Value Problems | 45 |
Kanwal R.P. — Linear Integral Equations: Theory and Techniques | 99, 101—103, 109, 117, 280 |
Braun M. — Differential Equations and Their Applications: An Introduction to Applied Mathematics | 481 |
Hildebrand F.B. — Advanced Calculus for Applications | 430, 443 |
Maeda F.Y. — Dirichlet Integrals on Harmonic Spaces | 166 |
Golberg M.A. — Numerical Solution of Integral Equations | 4, 25 |
Kumpera A., Spencer D.C. — Lie Equations: General Theory. Vol. 1 | 45 |
Kozlov V., Mazya V., Rossmann J. — Elliptic boundary value problems in domains with point singularities | 66, 118, 119 |
Rektorys K. — Survey of Applicable Mathematics.Volume 2. | II 176, see also "Dirichlet and Neumann" |
Hu S., Papageorgiou N.S. — Handbook of Multivalued Analysis, Volume II: Applications | 242 |
Fritzsche K., Grauert H. — From Holomorphic Functions To Complex Manifolds | 357 |
John F. — Partial Differential Equations | 95, 103 |
Kanwal R.P. — Generalized functions: Theory and technique | 311, 315 |
Young D.M., Gregory R.T. — A Survey of Numerical Mathematics, Volume 2 | 994 |
Tannehill J.C., Anderson D.A., Pletcher R.H. — Computational Fluid Mechanics and Heat Transfer | 34 |
Choquet-Bruhat Y., Dewitt-Morette C. — Analysis, manifolds and physics | 503, 509 |
Buckmaster J. — The Mathematics of combustion | 61 |
Lin C., Segel L. — Mathematics Applied to Deterministic Problems in the Natural Sciences | 573 |
Lin C., Segel L. — Mathematics Applied to Deterministic Problems in the Natural Sciences | 573 |
Logan J. — Applied Mathematics: A Contemporary Approach | 174, 518 |
Lin C., Segel L. — Mathematics applied to deterministic problems in the natural sciences | 573 |
Kline M. — Mathematical thought from ancient to modern times | 685 |