| Книга | Страницы для поиска |
| Kadison R.V., Ringrose J.R. — Fundamentals of the theory of operator algebras (vol. 1) Elementary Theory | 62 |
| Taylor M.E. — Partial Differential Equations. Basic theory (vol. 1) | 490 |
| Rudin W. — Fourier Analysis on Groups | 258 |
| Reed M., Simon B. — Methods of Modern mathematical physics (vol. 1) Functional analysis | 83 |
| Ito K. — Encyclopedic Dictionary of Mathematics. Vol. 2 | 37.I 25.I |
| Evans L.C. — Partial Differential Equations | 417, 638 |
| Streater R.S., Wightman A.S. — PCT, Spin and Statistics, and All That | 90 |
| Rudin W. — Real and Complex Analysis | 116 |
| Folland J.B. — Real Analysis: Modern Techniques and Their Applications | 163 |
| Douglas R.G. — Banach algebra techniques in operator theory | 29 |
| Pugovecki E. — Quantum mechanics in hilbert space | 210 |
| Debnath L., Mikusinski P. — Introduction to Hilbert Spaces with Applications | 208 |
| Carr J. — Applications of Centre Manifold Theory | 106 |
| Dudley R.M., Fulton W. (Ed) — Real Analysis and Probability | 213 |
| Prugovecki E. — Quantum Mechanics in Hilbert Space | 210 |
| Young R.M. — An Introduction to Non-Harmonic Fourier Series, Revised Edition | 35, 169 |
| Gohberg I., Goldberg S. — Basic Operator Theory | 221, 278 |
| Reed M., Simon B. — Methods of Modern mathematical physics (vol. 3) Scattering theory | 83 |
| Reed M., Simon B. — Methods of Functional Analysis (in 4 volumes). Volume 1: Functional Analysis | 83 |
| Royden H.L. — Real Analysis | 196 |
| Reed M., Simon B. — Methods of Modern mathematical physics (vol. 4) Analysis of operators | $83^1$ |
| Arcangeli R. — Multidimensional Minimizing Splines | 10 |
| Rudin W. — Functional analysis | 50 |
| Royden H.L. — Real Analysis | 196 |
| Lang S. — Real Analysis | 215 |
| Ito K. — Encyclopedic Dictionary of Mathematics | 37.I, 251.D, 424.X |
| Kannan D. (ed.), Lakshmikantham V. (ed.) — Handbook of stochastic analysis and applications | 23 |
| Rudin W. — Real and complex analysis | 114 |
| Dieudonne J.A. — Treatise on Analysis, Vol. 2 | 12.16 |
| Helemskii A.Ya. — Lectures and Exercises on Functional Analysis, Vol. 233 | 151 |
| Kadison R.V., Ringrose J.R. — Fundamentals of the Theory of Operator Algebras (vol. 2) Advanced Theory | 62 |
| Kolmogorov A.N., Fomin S.V. — Introductory real analysis | 238 |
| Schechter M. — Spectra of partial differential operators | 6 |
| Köthe G. — Topological vector spaces I | 167 |
| Balachandran V.K. — Topological Algebras. Volume 185 | 3.1.16, 105 |
| Husain T., Khaleelulla S.M. — Barrelledness in Topological and Ordered Vector Spaces | 15 |
| Morimoto M. — Introduction to Sato's hyperfunctions | 244 |
| Hu S.-T. — Elements of real analysis | 257 |
| Munkres J. — Topology | 171 |
| Young R.M. — An Introduction to Nonharmonic Fourier Series | 35, 169 |
| Bogolubov N.N., Logunov A.A., Todorov I.T. — Introduction to Axiomatic Quantum Field Theory | 35 |
| Reed M., Simon B. — Methods of Modern mathematical physics (vol. 2) Fourier analysis, self-adjointness | 83 |
| Simmons G.F. — Introduction to topology and modern analysis | 238 |
| Ash R.B., Doléans-Dade C.A. — Probability and Measure Theory | 163 |
| Doran R.S., Wichmann J. — Approximate Identities and Factorization in Banach Modules | 100 |
| Conway J.B. — A Course in Functional Analysis | 94 |
| Lang S. — Real and Functional Analysis (Graduate Texts in Mathematics Series #142) | 395 |
| Ya Helemskii A., West A. — Banach and locally convex algebras | 13 |
| Bridges D.S. — Foundations Of Real And Abstract Analysis | 285 |
| Streater R.F., Wightman A.S. — PCT, spin and statistics and all that | 90 |
| Goffman C., Pedrick G. — First course in functional analysis | 98 |
| Kreyszig E. — Introductory functional analysis with applications | 292 |
| Schechter M. — Operator methods in quantum mechanics | 36 |
| Aliprantis C. — Principles of real analysis | 234 |
| Choquet-Bruhat Y., DeWitt-Morette C., Dillard-Bleick M. — Analysis, manifolds and physics. Part I. | 63 |
| Abramovich Y.A., Aliprantis C.D. — An Invitation to Operator Theory | 5 |
| Hille E. — Methods in classical and functional analysis | 312 |
| Kwong M.K. — Norm Inequalities For Derivatives And Differences | 22 |
| Douglas R.G. — Banach algebra techniques in operator theory | 29 |
| Loomis L.H. — An introduction to abstract harmonic analysis | 17, 18 |
| Carroll R.W. — Mathematical physics | 325 |
| Kuttler K.L. — Modern Analysis | 39 |
| Shick P.L. — Topology: Point-set and geometric | 147 |
| Hewitt E., Stromberg K. — Real and abstract analysis: a modern treatment of the theory of functions of a real variable | 217 |
| Hinrichsen D., Pritchard A. — Mathematical Systems Theory I: Modelling, State Space Analysis, Stability and Robustness | 757 |
| Aubin J., Frankowska H. — Set-Valued Analysis | 60 |
| Dunford N., Schwartz J., Bade W.G. — Linear operators. Part 2 | II.2.4 (57) |
| Howes N.R — Modern Analysis and Topology | 347 |
| Treves F. — Topological Vector Spaces, Distributions And Kernels | 168 |
| Kauffman R.M., Read Th.T., Zettl A. — The Deficiency Index Problem for Powers of Ordinary Differential Expressions | 3 |
| Dunford N., Schwartz J.T., Bade W.G. — Linear Operators, Part II: Spectral Theory. Self Adjoint Operators in Hilbert Space (Pure and Applied Mathematics: A Series of Texts and Monographs) | II.2.4 57 |
| Lions J-L., Dautray R. — Mathematical Analysis and Numerical Methods for Science and Technology: Volume 2: Functional and Variational Methods | 280 |
| Cheney W. — Analysis for Applied Mathematics | 49 |
| Morrison T.M. — Functional Analysis: An Introduction to Banach Space Theory | 63, 81—82, 103, 105, 106, 161, 165, 305 |
| Abramovich Y., Aliprantis C. — An Invitation to Operator Theory (Graduate Studies in Mathematics, V. 50) | 5 |
| Choquet-Bruhat Y., Dewitt-Morette C. — Analysis, manifolds and physics | 63 |