|
|
Результат поиска |
Поиск книг, содержащих: Bochner, S.
Книга | Страницы для поиска | Джеммер М. — Эволюция понятий квантовой механики | 304 | Andrews G., Askey R., Roy R. — Special Functions | 464, 542 | Bruce C.Berndt — Ramanujan's Notebooks (part 1) | 322 | Harris R.J. — A primer of multivariate statistic | 28, 113—114, 345, 345t | Gilbert J., Murray M. — Clifford Algebras and Dirac Operators in Harmonic Analysis | 199 | Hewitt E., Ross K.A. — Abstract Harmonic Analysis (Vol. 1) | 1, 282 | Nikolskii N.K. — Treatise on the Shift Operator: Spectral Function Theory | 58, 412, 457 | Hewitt E., Ross K.A. — Abstract Harmonic Analysis (Vol. 2) | 206, 250, 251, 289, 325, 326, 327, 413, 448, 520, 549 | Ward R.S., Wells R.O. — Twistor geometry and field theory | 54, 55, 192 | Bateman P.T., Diamond H.G. — Analytic Number Theory: An Introductory Course | 181 | Bellman R. — A brief introduction to theta functions | 21, 25, 29, 68 | Skorokhod A.V., Prokhorov Y.V. (Ed) — Basic Principles and Applications of Probability Theory | 45ff, 118 | Bergman S., Schiffer M. — Kernel Functions and Elliptic Differential Equations in Mathematical Physics | 119 | Dudley R.M., Fulton W. (Ed) — Real Analysis and Probability | 332, 480 | Young R.M. — An Introduction to Non-Harmonic Fourier Series, Revised Edition | 220, 226 | Hirzebruch F. — Topological Methods in Algebraic Geometry | 140, 215 | Tarkhanov N.N. — Cauchy Problem for Solutions of Elliptic Equations | 41 | Krantz S.G. — Function Theory of Several Complex Variables | 49, 99 | Dunkl Ch.F., Ramirez D.E. — Representations of Commutative Semitopological Semigroups | 27 | Milovanovic G.V., Mitrinovic D.S., Rassias T.M. — Topics in Polynomials: Extremal Problems, Inequalities, Zeros | 37, 39, 76 | Kuznetsov N., Mazya V., Vainberq B. — Linear Water Waves: A Mathematical Approach | 39, 314 | Berndt B.C., Evans R.J., Williams K.S. — Gauss and Jacobi Sums | 52 | Bellman R. — Introduction to Matrix Analysis | 108, 301 | Santner T.J., Williams B.J., Notz W.I. — The Design and Analysis of Computer Experiments | 33, 252 | Grosswald E. — Bessel Polynomials | 1, 164 | Yano K. — Differential geometry on complex and almost complex spaces | 1, 21, 28, 29, 32, 33, 45, 49, 62, 103, 106, 142, 145, 303, 304, 318 | Kammler D.W. — First Course in Fourier Analysis | 59, A1 | Havin V.P., Nikolski N.K. (eds.) — Linear and Complex Analysis Problem Book 3 (part 2) | 13.2, 15.11 | Bingham N.H., Goldie C.M., Teugels J.L. — Regular variation | 193 | Guggenheimer H.W. — Differential Geometry | 351, 352, 353, 355 | Bhatia N.P., Szego G.P. — Dynamical Systems: Stability Theory and Applications | 2.10.17 | Young R.M. — An Introduction to Nonharmonic Fourier Series | 220, 226 | Feller W. — Introduction to probability theory and its applications (Volume II) | 321, 347, 454, 620, 622, 634, 655 | Bogolubov N.N., Logunov A.A., Todorov I.T. — Introduction to Axiomatic Quantum Field Theory | 495, 627 | Bracewell R.N. — The Fourier Transform and its applications | 21 | Pinsky M.A. — Introduction to Fourier Analysis and Wavelets | 139 | Egorov Y.V. (Ed), Shubin M.A. (Ed) — Partial Differential Equations II: Elements of the Modern Theory. Equations with Constant Coefficients | 159, 166, 239 | Wawrzynczyk A. — Group representations and special functions | 142 | Petersen K.E. — Ergodic theory | 139 | Barut A.O., Raczka R. — Theory of Group Representations and Applications | 163 | Rao M.M., Swift R.J. — Probability Theory With Applications | 73, 169, 185, 256, 341, 396, 490 | Simmons G.F. — Differential Equations with Applications and Historical Notes | 377n | Alekseevskij D.V., Vinogradov A.M., Lychagin V.V. — Geometry I: Basic Ideas and Concepts of Differential Geometry | 205, 214 | Bracewell R. — The Fourier Transform and Its Applications | 21 | Onishchik A.L. (ed.) — Lie Groups and Lie Algebras | 114, 125 | Stanley R.P. — Enumerative Combinatorics: Volume 2 | 254 | Bellman R.E. — Some vistas of modern mathematics: Dynamic programming, invariant imbedding, and the mathematical biosciences | 134 | Adler R.J. — Geometry of random fields | 25 | Mandel L., Wolf E. — Optical Coherence and Quantum Optics | 18 | Semadini Z. — Banach Spaces of Continuous Functions. Vol. 1 | 253, 293, 326, 496 | Papoulis A. — The Fourier Integral and Its Applications | 9 | Onishchik A.L. (ed.) — Lie Groups and Lie Algebras (volume 1) | 114, 115 | Dym H., McKean H.P. — Fourier Series and Integrals | 282 | Lukacs E. — Characterisic functions | 62, 145, 210 | Gorbatsevich V.V., Vinberg E.B., Onishchik A.L. — Foundations of Lie theory and Lie transformation groups | 114, 115 | Adams D.R., Hedberg L.I. — Function spaces and potential theory | 11 | Kentaro Yano — Integral Formulas in Riemannian Geometry | 1, 39, 42, 44, 71, 75, 76, 77, 117, 120, 124, 141, 150 | Krantz S.G. — Function theory of several complex variables | 49, 99 | Beckenbach E.F., Bellman R. — Inequalities | 38, 53, 66, 67, 100, 101, 114, 124—126, 128, 148—150, 155, 157, 161—163 | Donoghue W.F. — Distributions and Fourier transforms | 184 | Davis H.T. — Introduction to nonlinear differential and integral equations | 546 | Grosswald E. — Bessel Polynomials | 1, 164 | Bellman R. — Methods of nonlinear analysis (Vol. 2) | 48 | Dunford N., Schwartz J., Bade W.G. — Linear operators. Part 2 | 232—233, 235, 283, 315, 386, 390, 395, 540, 543, 552, 883, 1160, 1254, 1273, 1274 | Hille E., Phillips R.S. — Functional Analysis and Semi-Groups | 62, 67, 76, 129, 155, 230, 570, 592, 673, 674 | Klimyk A.U., Vilenkin N.Ya. — Representation Theory and Noncommutative Harmonic Analysis II: Homogeneous Spaces, Representations and Special Functions | 151 | Kuczma M. — Functional equations in a single variable | 194, 244, 316, 320, 346 | Bharucha-Reid A.T. — Elements of the Theory of Markov Processes and Their Applications | 5, 130, 162, 264, 289 | Dym H., McKean H. — Fourier Series and Integrals (Probability & Mathematical Statistics Monograph) | 282 | Davis P., Hersh R. — The Mathematical Experience | 65 | Dunford N., Schwartz J.T., Bade W.G. — Linear Operators, Part II: Spectral Theory. Self Adjoint Operators in Hilbert Space (Pure and Applied Mathematics: A Series of Texts and Monographs) | 232—233, 235, 283, 315, 386, 390, 395, 540, 543, 552, 883, 1160, 1254, 1273, 1274 | Yano K. — Integral Formulas in Riemannian Geometry | 1, 39, 42, 44, 71, 75, 76, 77, 117, 120, 124, 141, 150 | Reichl L.E. — Modern Course in Statistical Physics | 225 | Morrison T.M. — Functional Analysis: An Introduction to Banach Space Theory | 180, 181 | Лукомская А.М. — Основные иностранные библиографические источники по математике и механике 1931-1957 | 413 | Beckenbach E., Bellman R. — Inequalities (Ergebnisse der Mathematik und ihrer Grenzgebiete. 2. Folge) | 38, 53, 66, 67, 100, 101,114, 124—126, 128, 148—150, 155,157, 161—163 |
|
|