|
|
Ðåçóëüòàò ïîèñêà |
Ïîèñê êíèã, ñîäåðæàùèõ: Poincare group
Êíèãà | Ñòðàíèöû äëÿ ïîèñêà | Greiner W., Muller B., Rafelski J. — Quantum electrodynamics of strong fields | 221 | Ito K. — Encyclopedic Dictionary of Mathematics. Vol. 2 | 170258.A | Zeidler E. — Nonlinear Functional Analysis and its Applications IV: Applications to Mathematical Physic | 712, 781 | Di Francesco P., Mathieu P., Senechal D. — Conformal field theory | 95 | Gilbert J., Murray M. — Clifford Algebras and Dirac Operators in Harmonic Analysis | 36 | Streater R.S., Wightman A.S. — PCT, Spin and Statistics, and All That | 14 | Olver P.J. — Equivalence, Invariants and Symmetry | 136, 173 | Felsager B. — Geometry, particles and fields | 539 | Lefschetz S. — Algebraic topology | 310 | Ward R.S., Wells R.O. — Twistor geometry and field theory | 47, 258, 259, 261, 271 | Landsman N.P. — Mathematical topics between classical and quantum mechanics | 394 | Naber G.L. — The geometry of Minkowski spacetime: an introduction to the mathematics of the special theory of relativity | 21 | Ohnuki Y. — Unitary representations of the Poincare group and relativistic wave equations | 6 | Gracia-Bondia J.M., Varilly J.C., Figueroa H. — Elements of Noncommutative Geometry | 558 | Kac V. — Vertex Algebra for Beginners | 3 | Torretti R. — Relativity and Geometry | 6, 62 | Reid M., Szendroi B. — Geometry and Topology | 173—176 | Atiyah M. — Representation Theory of Lie Groups | 154, 156 | Araki H. — Mathematical Theory of Quantum Fields | 61 | Roman P. — Introduction to quantum field theory | 6, 16, 56, 302 | Krupkova O. — The Geometry of Ordinary Variational Equations | 170 | Esposito F.P. (ed.), Witten L. (ed.) — Asymptotic structure of space-time | 5, 30 | Hall B.C. — Lie Groups, Lie Algebras, and Representations: An Elementary Understanding | 10, 43 | Gudder S.P. — Stochastic methods in quantum mechanics | 180 | Vick J.W. — Homology theory. An introduction to algebraic topology | 92 | Stephani H., MacCallum M. (ed.) — Differential equations: Their solution using symmetries | 195 | Szekeres P. — A Course in Modern Mathematical Physics: Groups, Hilbert Space and Differential Geometry | 56 | Ito K. — Encyclopedic Dictionary of Mathematics | 170, 258.A | DeWitt B.S. — The global approach to quantum field theory (Vol. 1) | 107ff, 357ff | Thaller B. — The Dirac equation | 47 | Stewart J. — Advanced general relativity | 52 | Thirring W.E. — Classical Mathematical Physics: Dynamical Systems and Field Theories | 217 | Choquet-Bruhat Y., Dewitt-Morette C. — Analysis, Manifolds and Physics (vol. 2) | 96, 115 | Thirring W.E. — Course in Mathematical Physics: Classical Dynamical System, Vol. 1 by Walter E. Thirring | 47, 189 | Greiner W., Muller B. — Gauge theory of weak interactions | 393 | Held A. (ed.) — General relativity and gravitation. 100 years after the birth of Albert Einstein (volume 1) | see also “Gauge theory” | Lopuzanski J. — An introduction to symmetry and supersymmetry in quantum field theory | 6, 8, 18, 101, 124, 129, 197, 284 | Dubrovin B.A., Fomenko A.T., Novikov S.P. — Modern Geometry - Methods and Applications. Part 1. The Geometry of Surfaces, Transformation Groups and Fields | 53 | Held A. (ed.) — General Relativity and Gravitation: One Hundred Years After the Birth of Albert Einstein, Vol. 2 | see “Gauge theory” | O'Raifeartaigh L. — Group Structure of Gauge Theories | 64, 79 | Logan J.D. — Invariant Variational Principles | see “Group” | Sattinger D.H., Weaver O.L. — Lie groups and algebras with applications to physics, geometry, and mechanics | 72 | Chevalley C. — Theory of Lie Group, Vol. 1 | 52 | Borne T., Lochak G., Stumpf H. — Nonperturbative quantum field theory and the structure of matter | 48, 61ff, 76f | Bogolubov N.N., Logunov A.A., Todorov I.T. — Introduction to Axiomatic Quantum Field Theory | 109—111, 131 (see also “Lorentz group”, “Relativistic invariance”) | Desloge E.A. — Classical Mechanics. Volume 1 | 893 | Reed M., Simon B. — Methods of Modern mathematical physics (vol. 2) Fourier analysis, self-adjointness | 63 | Miller W. — Symmetry Groups and Their Applications | 294, 311, 313 | Aldrovandi R. — Special matrices of mathematical physics (stochastic, circulant and bell matrices) | 202 | Collins P.D.B., Martin A.D., Squires E.J. — Particle Physics and Cosmology | 223 | Exner P. — Open quantum systems and Feynman integrals | 129 | Gilmore R. — Lie Groups, Lie Algebras and Some of Their Applications | 83, 453, 456, 493 | Siegel W. — Fields | IA4, IIIB | Sachs R.K., Wu H. — General relativity for mathematicians | 260 | Weinberg S. — Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity | 28 | Bayin S.S. — Mathematical Methods in Science and Engineering | 241 | Woodhouse N.M.J. — Geometric quantization | 114, 192 | Kaiser G. — Friendly Guide to Wavelets | 259 | Carmeli M. — Classical Fields: General Gravity and Gauge Theory | 13, 123—128, 207, 243, 349, 350, 358 | Barut A.O., Raczka R. — Theory of Group Representations and Applications | 515—516 | Baez J.C., Muniain J.P. — Gauge theories, knots, and gravity | 164 | Massey W.S. — Algebraic Topology: an introduction | 62 | Siegel W. — Fields | IA4, IIB | Konopleva N.P., Popov V.N. — Gauge Fields | 12, 86, 95 | Alicki R., Lendi K. — Quantum Dynamical Semigroups And Applications | 40 | Choquet-Bruhat Y. — General Relativity and the Einstein Equations | 23 | Deligne P., Etingof P., Freed D. — Quantum fields and strings: A course for mathematicians, Vol. 2 (pages 727-1501) | 151, 379ff, 1112 | Deligne P., Kazhdan D., Etingof P. — Quantum fields and strings: A course for mathematicians | 151, 379ff, 1112 | Biedenharn L.C., Louck J.D. — Angular momentum in quantum physics | 202, 325, 481 | Penrose R., Rindler W. — Spinors and space-time. Spinor and twistor methods in space-time geometry | 67, 84, 304, 366 | Anderson J.L. — Principles of Relativity Physics | 11, 76, 80, 85, 140 | Laurens Jansen — Theory of Finite Groups. Applications in Physics | 304ff. | Miller W. — Symmetry and Separation of Variables | 39, 40, 59, 224, 235, 242 | Wald R.M. — General Relativity | 283—285, 343—346, 353—354 | Ticciati R. — Quantum field theory for mathematicians | 8 | Haag R. — Local quantum physics: fields, particles, algebras | 8ff | Israel W. (ed.) — Relativity, astrophysics and cosmology | 14 | Zeidler E. — Oxford User's Guide to Mathematics | 851, 856 | Pier J.-P. — Mathematical Analysis during the 20th Century | 149, 257 | Israel W. — Relativity, Astrophysics and Cosmology | 14 | Brown L., Dresden M., Hoddeson L. — Pions to quarks: Particle physics in the 1950s | 373, 602—603, 612—615, 618—619, 623, 633 | Sexl R., Urbantke H.K. — Relativity, Groups, Particles. Special Relativity and Relativistic Symmetry in Field and Particle Physics | 51 | Inoue A. — Tomita-Takesaki Theory in Algebras of Unbounded Operators (Lecture Notes in Mathematics) | 213 | Mackey G. — Unitary Group Representations in Physics, Probability and Number Theory | 252, 255 | Guillemin V., Sternberg S. — Symplectic techniques in physics | 114, 441 | Collins P.D.B., Martin A.D., Squires E.J. — Particle Physics and Cosmology | 223 | Fritsch R., Piccinini R. — Cellular Structures in Topology (Cambridge Studies in Advanced Mathematics 19) | 287 | Azcarraga J., Izquierdo J. — Lie groups, Lie algebras, cohomology and some applications in physics | 4, 191, 193, 195, 287 | Thirring W., Harrell E.M. — Classical mathematical physics. Dynamical systems and field theory | 217 | Exner P. — Open quantum systems and Feynman integrals | 129 |
|
|