Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
Ìåõìàòÿíàì
square Ïåðâûé êóðñ

square Âòîðîé êóðñ

square Òðåòèé êóðñ

square ×åòâåðòûé êóðñ

square Ïÿòûé êóðñ
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
Êðàñîòà
blank
blank
Ðåçóëüòàò ïîèñêà

Ïîèñê êíèã, ñîäåðæàùèõ: Poincare group



ÊíèãàÑòðàíèöû äëÿ ïîèñêà
Greiner W., Muller B., Rafelski J. — Quantum electrodynamics of strong fields221
Ito K. — Encyclopedic Dictionary of Mathematics. Vol. 2170258.A
Zeidler E. — Nonlinear Functional Analysis and its Applications IV: Applications to Mathematical Physic712, 781
Di Francesco P., Mathieu P., Senechal D. — Conformal field theory95
Gilbert J., Murray M. — Clifford Algebras and Dirac Operators in Harmonic Analysis36
Streater R.S., Wightman A.S. — PCT, Spin and Statistics, and All That14
Olver P.J. — Equivalence, Invariants and Symmetry136, 173
Felsager B. — Geometry, particles and fields539
Lefschetz S. — Algebraic topology310
Ward R.S., Wells R.O. — Twistor geometry and field theory47, 258, 259, 261, 271
Landsman N.P. — Mathematical topics between classical and quantum mechanics394
Naber G.L. — The geometry of Minkowski spacetime: an introduction to the mathematics of the special theory of relativity21
Ohnuki Y. — Unitary representations of the Poincare group and relativistic wave equations6
Gracia-Bondia J.M., Varilly J.C., Figueroa H. — Elements of Noncommutative Geometry558
Kac V. — Vertex Algebra for Beginners3
Torretti R. — Relativity and Geometry6, 62
Reid M., Szendroi B. — Geometry and Topology173—176
Atiyah M. — Representation Theory of Lie Groups154, 156
Araki H. — Mathematical Theory of Quantum Fields61
Roman P. — Introduction to quantum field theory6, 16, 56, 302
Krupkova O. — The Geometry of Ordinary Variational Equations170
Esposito F.P. (ed.), Witten L. (ed.) — Asymptotic structure of space-time5, 30
Hall B.C. — Lie Groups, Lie Algebras, and Representations: An Elementary Understanding10, 43
Gudder S.P. — Stochastic methods in quantum mechanics180
Vick J.W. — Homology theory. An introduction to algebraic topology92
Stephani H., MacCallum M. (ed.) — Differential equations: Their solution using symmetries195
Szekeres P. — A Course in Modern Mathematical Physics: Groups, Hilbert Space and Differential Geometry56
Ito K. — Encyclopedic Dictionary of Mathematics170, 258.A
DeWitt B.S. — The global approach to quantum field theory (Vol. 1)107ff, 357ff
Thaller B. — The Dirac equation47
Stewart J. — Advanced general relativity52
Thirring W.E. — Classical Mathematical Physics: Dynamical Systems and Field Theories217
Choquet-Bruhat Y., Dewitt-Morette C. — Analysis, Manifolds and Physics (vol. 2)96, 115
Thirring W.E. — Course in Mathematical Physics: Classical Dynamical System, Vol. 1 by Walter E. Thirring47, 189
Greiner W., Muller B. — Gauge theory of weak interactions393
Held A. (ed.) — General relativity and gravitation. 100 years after the birth of Albert Einstein (volume 1)see also “Gauge theory”
Lopuzanski J. — An introduction to symmetry and supersymmetry in quantum field theory6, 8, 18, 101, 124, 129, 197, 284
Dubrovin B.A., Fomenko A.T., Novikov S.P. — Modern Geometry - Methods and Applications. Part 1. The Geometry of Surfaces, Transformation Groups and Fields53
Held A. (ed.) — General Relativity and Gravitation: One Hundred Years After the Birth of Albert Einstein, Vol. 2see “Gauge theory”
O'Raifeartaigh L. — Group Structure of Gauge Theories64, 79
Logan J.D. — Invariant Variational Principlessee “Group”
Sattinger D.H., Weaver O.L. — Lie groups and algebras with applications to physics, geometry, and mechanics72
Chevalley C. — Theory of Lie Group, Vol. 152
Borne T., Lochak G., Stumpf H. — Nonperturbative quantum field theory and the structure of matter48, 61ff, 76f
Bogolubov N.N., Logunov A.A., Todorov I.T. — Introduction to Axiomatic Quantum Field Theory109—111, 131 (see also “Lorentz group”, “Relativistic invariance”)
Desloge E.A. — Classical Mechanics. Volume 1893
Reed M., Simon B. — Methods of Modern mathematical physics (vol. 2) Fourier analysis, self-adjointness63
Miller W. — Symmetry Groups and Their Applications294, 311, 313
Aldrovandi R. — Special matrices of mathematical physics (stochastic, circulant and bell matrices)202
Collins P.D.B., Martin A.D., Squires E.J. — Particle Physics and Cosmology223
Exner P. — Open quantum systems and Feynman integrals129
Gilmore R. — Lie Groups, Lie Algebras and Some of Their Applications83, 453, 456, 493
Siegel W. — FieldsIA4, IIIB
Sachs R.K., Wu H. — General relativity for mathematicians260
Weinberg S. — Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity28
Bayin S.S. — Mathematical Methods in Science and Engineering241
Woodhouse N.M.J. — Geometric quantization114, 192
Kaiser G. — Friendly Guide to Wavelets259
Carmeli M. — Classical Fields: General Gravity and Gauge Theory13, 123—128, 207, 243, 349, 350, 358
Barut A.O., Raczka R. — Theory of Group Representations and Applications515—516
Baez J.C., Muniain J.P. — Gauge theories, knots, and gravity164
Massey W.S. — Algebraic Topology: an introduction62
Siegel W. — FieldsIA4, IIB
Konopleva N.P., Popov V.N. — Gauge Fields12, 86, 95
Alicki R., Lendi K. — Quantum Dynamical Semigroups And Applications40
Choquet-Bruhat Y. — General Relativity and the Einstein Equations23
Deligne P., Etingof P., Freed D. — Quantum fields and strings: A course for mathematicians, Vol. 2 (pages 727-1501)151, 379ff, 1112
Deligne P., Kazhdan D., Etingof P. — Quantum fields and strings: A course for mathematicians151, 379ff, 1112
Biedenharn L.C., Louck J.D. — Angular momentum in quantum physics202, 325, 481
Penrose R., Rindler W. — Spinors and space-time. Spinor and twistor methods in space-time geometry67, 84, 304, 366
Anderson J.L. — Principles of Relativity Physics11, 76, 80, 85, 140
Laurens Jansen — Theory of Finite Groups. Applications in Physics304ff.
Miller W. — Symmetry and Separation of Variables39, 40, 59, 224, 235, 242
Wald R.M. — General Relativity283—285, 343—346, 353—354
Ticciati R. — Quantum field theory for mathematicians8
Haag R. — Local quantum physics: fields, particles, algebras8ff
Israel W. (ed.) — Relativity, astrophysics and cosmology14
Zeidler E. — Oxford User's Guide to Mathematics851, 856
Pier J.-P. — Mathematical Analysis during the 20th Century149, 257
Israel W. — Relativity, Astrophysics and Cosmology14
Brown L., Dresden M., Hoddeson L. — Pions to quarks: Particle physics in the 1950s373, 602—603, 612—615, 618—619, 623, 633
Sexl R., Urbantke H.K. — Relativity, Groups, Particles. Special Relativity and Relativistic Symmetry in Field and Particle Physics51
Inoue A. — Tomita-Takesaki Theory in Algebras of Unbounded Operators (Lecture Notes in Mathematics)213
Mackey G. — Unitary Group Representations in Physics, Probability and Number Theory252, 255
Guillemin V., Sternberg S. — Symplectic techniques in physics114, 441
Collins P.D.B., Martin A.D., Squires E.J. — Particle Physics and Cosmology223
Fritsch R., Piccinini R. — Cellular Structures in Topology (Cambridge Studies in Advanced Mathematics 19)287
Azcarraga J., Izquierdo J. — Lie groups, Lie algebras, cohomology and some applications in physics4, 191, 193, 195, 287
Thirring W., Harrell E.M. — Classical mathematical physics. Dynamical systems and field theory217
Exner P. — Open quantum systems and Feynman integrals129
blank
HR
@Mail.ru
© Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2024
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01!| Valid CSS! Î ïðîåêòå