Êíèãà | Ñòðàíèöû äëÿ ïîèñêà |
Guillemin V., Pollack A. — Differential topology | 5 |
Hunter J.K., Nachtergaele B. — Applied Analysis | 14 |
Gray R.M. — Probability, Random Processes and Ergodic Properties | 49 |
Apostol T.M. — Calculus (vol 2) | 244 |
Falconer K. — Fractal Geometry. Mathematical Foundations and applications | 3 |
Ito K. — Encyclopedic Dictionary of Mathematics. Vol. 2 | 140 |
Falconer K. — Fractal Geometry: Mathematical Foundations and Applications | 4 |
Seebach J.A., Steen L.A. — Counterexamples in Topology | 34 |
Rudin W. — Real and Complex Analysis | 9 |
Conway J.B. — Functions of One Complex Variable | 11 |
Lee J.M. — Introduction to Smooth Manifolds | 423 |
Webster R. — Convexity | 32 |
Lee J.M. — Introduction to Topological Manifolds | 348 |
Artin M. — Algebra | 593 |
Mill J.V. — The Infinite-Dimensional Topology of Function Spaces | 459 |
James I.M. — Topological and Uniform Spaces | 19—21, 47, 59, 88, 101, 108, 118, 122, 138 |
Searcid M. — Metric Spaces | 71 |
Falconer K.J. — Techniques in Fractal Geometry | 1 |
Krantz S.G. — Function Theory of Several Complex Variables | 2 |
Sahoo P.K., Riedel T. — Mean Value Theorems and Functional Equations | 164 |
Morris S.A. — Topology without tears | 96 |
Ratcliffe J.G. — Foundations of Hyperbolic Manifolds | 15 |
Duistermaat J.J., Kolk J.A.C. — Multidimensional Real Analysis II: Integration | 6 |
Duistermaat J.J., Kolk J.A.C. — Multidimensional Real Analysis I(Cambridge Studies in Advanced Mathematics #86), Vol. 1 | 6 |
Ziemer W.P. — Weakly Differentiable Functions: Sobolev Spaces and Functions of Bounded Variation | 1.1(2) |
Lang S.A. — Undergraduate Analysis | 135 |
Brickell F., Clark R.S. — Differentiable Manifolds | 4 |
Eidelman Y., Milman V., Tsolomitis A. — Functional Analysis. An Introduction | 12 |
Szekeres P. — A Course in Modern Mathematical Physics: Groups, Hilbert Space and Differential Geometry | 256, 264 |
Ito K. — Encyclopedic Dictionary of Mathematics | 140 |
Rudin W. — Real and complex analysis | 9 |
Mukhi S., Mukunda N. — Introduction to Topology, Differential Geometry and Group Theory for Physicists | 4 |
Kress R., Gehring F.W. — Numerical Analysis | 29 |
Dieudonne J. — Foundation of Modern Analysis | 3.4 |
Kythe P.K. — Fundamental Solutions for Differential Operators and Applications | 11 |
Weir A.J. — Lebesgue Integration and Measure | 82, 224 |
Kolmogorov A.N., Fomin S.V. — Introductory real analysis | see “Open sphere” |
Munkres J.R. — Analysis on manifolds | 26 |
Berger M., Cole M. (translator) — Geometry I (Universitext) | 0.3 |
Hu S.-T. — Elements of real analysis | 161 |
Janich K. — Topology | 8 |
Fine B., Rosenberger G. — Fundamental Theorem of Algebra | 143 |
Wheeden R.L., Zygmund A. — Measure and integral. An introduction to real analysis | 5 |
Ash R.B. — Real Variables with Basic Metric Space Topology | 11 |
Pears A.R. — Dimension theory of general spaces | 9 |
Saxe K. — Beginning functional analysis | 14 |
Lang S. — Real and Functional Analysis (Graduate Texts in Mathematics Series #142) | 18 |
Dieudonne J. — Foundation of Modern Analysis | 3.4 |
Bridges D.S. — Foundations Of Real And Abstract Analysis | 130 |
Grosche C. — Path integrals, hyperbolic spaces, and Selberg trace formulae | 108 |
Brickell F., Clark R.S. — Differentiable manifolds | 4 |
Kreyszig E. — Introductory functional analysis with applications | 18 |
Hu S.T. — Introduction to general topology | 108 |
Hu S.-T. — Introduction to contemporary mathematics | 169 |
Aliprantis C. — Principles of real analysis | 35, 366 |
Choquet-Bruhat Y., DeWitt-Morette C., Dillard-Bleick M. — Analysis, manifolds and physics. Part I. | 424 |
Gelbaum B.R. — Problems in Real and Complex Analysis | 2.1. 16, 3.1. 34, s 2.3. 191 |
Krantz S.G. — Function theory of several complex variables | 2 |
Lang S. — Undergraduate analysis | 135 |
Hewitt E., Stromberg K. — Real and abstract analysis: a modern treatment of the theory of functions of a real variable | 60 |
Blum E.K., Lototsky S.V. — Mathematics of Physics and Engineering | 121 |
Wrede R.C., Spiegel M. — Theory and problems of advanced calculus | 117 |
Dieudonne J. — Linear Algebra and Geometry. | 5.1.9 |
Apostol T.M. — Calculus (Volume 2): Multi-Variable Calculus and Linear Algebra with Applications | 244 |
Cohen G.L. — A Course in Modern Analysis and Its Applications | 158 |
Pier J.-P. — Mathematical Analysis during the 20th Century | 33 |
James I.M. (ed.) — Topological and Uniform Spaces | 19—21, 47, 59, 88, 101, 108, 118, 122, 138 |
Magaril-Il'yaev G.G., Tikhomirov V.M. — Convex Analysis: Theory and Applications | 27 |
Blanchard P., Bruening E. — Mathematical Methods in Physics: Distributions, Hilbert Space Operators, and Variational Method | 441 |
Falconer K. — Fractal geometry: mathematical foundations and applications | 4 |
Sagle A. A. — Introduction to Lie groups and Lie algebras | 3, 41 |
Fritsch R., Piccinini R. — Cellular Structures in Topology (Cambridge Studies in Advanced Mathematics 19) | 1 |
Choquet-Bruhat Y., Dewitt-Morette C. — Analysis, manifolds and physics | 424 |
Truss J.K. — Foundations of Mathematical Analysis | 121 |
Truss J. — Foundations of mathematical analysis | 121 |
J. K. Truss — Foundations of mathematical analysis MCet | 121 |