| Êíèãà | Ñòðàíèöû äëÿ ïîèñêà |
| Guillemin V., Pollack A. — Differential topology | 5 |
| Hunter J.K., Nachtergaele B. — Applied Analysis | 14 |
| Gray R.M. — Probability, Random Processes and Ergodic Properties | 49 |
| Apostol T.M. — Calculus (vol 2) | 244 |
| Falconer K. — Fractal Geometry. Mathematical Foundations and applications | 3 |
| Ito K. — Encyclopedic Dictionary of Mathematics. Vol. 2 | 140 |
| Falconer K. — Fractal Geometry: Mathematical Foundations and Applications | 4 |
| Seebach J.A., Steen L.A. — Counterexamples in Topology | 34 |
| Rudin W. — Real and Complex Analysis | 9 |
| Conway J.B. — Functions of One Complex Variable | 11 |
| Lee J.M. — Introduction to Smooth Manifolds | 423 |
| Webster R. — Convexity | 32 |
| Lee J.M. — Introduction to Topological Manifolds | 348 |
| Artin M. — Algebra | 593 |
| Mill J.V. — The Infinite-Dimensional Topology of Function Spaces | 459 |
| James I.M. — Topological and Uniform Spaces | 19—21, 47, 59, 88, 101, 108, 118, 122, 138 |
| Searcid M. — Metric Spaces | 71 |
| Falconer K.J. — Techniques in Fractal Geometry | 1 |
| Krantz S.G. — Function Theory of Several Complex Variables | 2 |
| Sahoo P.K., Riedel T. — Mean Value Theorems and Functional Equations | 164 |
| Morris S.A. — Topology without tears | 96 |
| Ratcliffe J.G. — Foundations of Hyperbolic Manifolds | 15 |
| Duistermaat J.J., Kolk J.A.C. — Multidimensional Real Analysis II: Integration | 6 |
| Duistermaat J.J., Kolk J.A.C. — Multidimensional Real Analysis I(Cambridge Studies in Advanced Mathematics #86), Vol. 1 | 6 |
| Ziemer W.P. — Weakly Differentiable Functions: Sobolev Spaces and Functions of Bounded Variation | 1.1(2) |
| Lang S.A. — Undergraduate Analysis | 135 |
| Brickell F., Clark R.S. — Differentiable Manifolds | 4 |
| Eidelman Y., Milman V., Tsolomitis A. — Functional Analysis. An Introduction | 12 |
| Szekeres P. — A Course in Modern Mathematical Physics: Groups, Hilbert Space and Differential Geometry | 256, 264 |
| Ito K. — Encyclopedic Dictionary of Mathematics | 140 |
| Rudin W. — Real and complex analysis | 9 |
| Mukhi S., Mukunda N. — Introduction to Topology, Differential Geometry and Group Theory for Physicists | 4 |
| Kress R., Gehring F.W. — Numerical Analysis | 29 |
| Dieudonne J. — Foundation of Modern Analysis | 3.4 |
| Kythe P.K. — Fundamental Solutions for Differential Operators and Applications | 11 |
| Weir A.J. — Lebesgue Integration and Measure | 82, 224 |
| Kolmogorov A.N., Fomin S.V. — Introductory real analysis | see “Open sphere” |
| Munkres J.R. — Analysis on manifolds | 26 |
| Berger M., Cole M. (translator) — Geometry I (Universitext) | 0.3 |
| Hu S.-T. — Elements of real analysis | 161 |
| Janich K. — Topology | 8 |
| Fine B., Rosenberger G. — Fundamental Theorem of Algebra | 143 |
| Wheeden R.L., Zygmund A. — Measure and integral. An introduction to real analysis | 5 |
| Ash R.B. — Real Variables with Basic Metric Space Topology | 11 |
| Pears A.R. — Dimension theory of general spaces | 9 |
| Saxe K. — Beginning functional analysis | 14 |
| Lang S. — Real and Functional Analysis (Graduate Texts in Mathematics Series #142) | 18 |
| Dieudonne J. — Foundation of Modern Analysis | 3.4 |
| Bridges D.S. — Foundations Of Real And Abstract Analysis | 130 |
| Grosche C. — Path integrals, hyperbolic spaces, and Selberg trace formulae | 108 |
| Brickell F., Clark R.S. — Differentiable manifolds | 4 |
| Kreyszig E. — Introductory functional analysis with applications | 18 |
| Hu S.T. — Introduction to general topology | 108 |
| Hu S.-T. — Introduction to contemporary mathematics | 169 |
| Aliprantis C. — Principles of real analysis | 35, 366 |
| Choquet-Bruhat Y., DeWitt-Morette C., Dillard-Bleick M. — Analysis, manifolds and physics. Part I. | 424 |
| Gelbaum B.R. — Problems in Real and Complex Analysis | 2.1. 16, 3.1. 34, s 2.3. 191 |
| Krantz S.G. — Function theory of several complex variables | 2 |
| Lang S. — Undergraduate analysis | 135 |
| Hewitt E., Stromberg K. — Real and abstract analysis: a modern treatment of the theory of functions of a real variable | 60 |
| Blum E.K., Lototsky S.V. — Mathematics of Physics and Engineering | 121 |
| Wrede R.C., Spiegel M. — Theory and problems of advanced calculus | 117 |
| Dieudonne J. — Linear Algebra and Geometry. | 5.1.9 |
| Apostol T.M. — Calculus (Volume 2): Multi-Variable Calculus and Linear Algebra with Applications | 244 |
| Cohen G.L. — A Course in Modern Analysis and Its Applications | 158 |
| Pier J.-P. — Mathematical Analysis during the 20th Century | 33 |
| James I.M. (ed.) — Topological and Uniform Spaces | 19—21, 47, 59, 88, 101, 108, 118, 122, 138 |
| Magaril-Il'yaev G.G., Tikhomirov V.M. — Convex Analysis: Theory and Applications | 27 |
| Blanchard P., Bruening E. — Mathematical Methods in Physics: Distributions, Hilbert Space Operators, and Variational Method | 441 |
| Falconer K. — Fractal geometry: mathematical foundations and applications | 4 |
| Sagle A. A. — Introduction to Lie groups and Lie algebras | 3, 41 |
| Fritsch R., Piccinini R. — Cellular Structures in Topology (Cambridge Studies in Advanced Mathematics 19) | 1 |
| Choquet-Bruhat Y., Dewitt-Morette C. — Analysis, manifolds and physics | 424 |
| Truss J.K. — Foundations of Mathematical Analysis | 121 |
| Truss J. — Foundations of mathematical analysis | 121 |
| J. K. Truss — Foundations of mathematical analysis MCet | 121 |