| Êíèãà | Ñòðàíèöû äëÿ ïîèñêà |
| Nevanlinna R., Paatero V. — Introduction to Complex Analysis | 72 |
| Ito K. — Encyclopedic Dictionary of Mathematics. Vol. 2 | 234.C |
| Berger M. — A Panoramic View of Riemannian Geometry | 204 |
| Di Francesco P., Mathieu P., Senechal D. — Conformal field theory | 339 |
| Yale P.B. — Geometry and Symmetry | 101 |
| Ash R.B. — A Course In Algebraic Number Theory | 5-1 |
| Lee M.H. — Mixed Automorphic Forms, Torus Bundles, and Jacobi Forms | 68 |
| Kodaira K. — Complex manifolds and deformation of complex structures | 47 |
| Silverman J.H. — The arithmetic of elliptic curves | 232, 233, 243 |
| Farkas H., Kra I. — Riemann Surfaces | 206 |
| Springer G. — Introduction to Riemann Surfaces | 229 |
| Benson D. — Mathematics and music | 215 |
| Borevich Z.I., Shafarevich I.R. — Number Theory | 312 |
| Artin M. — Algebra | 195 |
| Bellman R. — A brief introduction to theta functions | 3—4 |
| Behnke H., Bachmann F., Fladt K. — Fundamentals of Mathematics, Volume I: Foundations of Mathematics: The Real Number System and Algebra | 411 |
| Knopp K. — Elements of the Theory of Functions | 116 |
| Knapp A.W. — Elliptic Curves (MN-40) | 228, 260 |
| Hazewinkel M. (ed.) — Handbook of Algebra, Volume 4 | 390 |
| Hale J.K., Magalhaes L.T., Oliva W. — Dynamics in Infinite Dimensions | 83 |
| Everest G., Ward T. — An Introduction to Number Theory | 125 |
| Keen L., Lakic N. — Table of Contents Hyperbolic Geometry from a Local Viewpoint | 98, 99 |
| Zoladek H. — Monodromy Group | 506 |
| Ratcliffe J.G. — Foundations of Hyperbolic Manifolds | 236 |
| Hall B.C. — Lie Groups, Lie Algebras, and Representations: An Elementary Understanding | 274 |
| Jost J., Simha R.T. — Compact Riemann Surfaces: An Introduction to Contemporary Mathematics | 44, 46, 75 |
| Devaney R.L. — An introduction to chaotic dynamical systems | 55 |
| Cohen H.A. — A Course in Computational Algebraic Number Theory | 368 |
| Cohn P.M. — Algebraic numbers and algebraic functions | 161 |
| Platonov V., Rapinchuk A. — Algebraic groups and number theory | 163 |
| Stewart I., Tall D. — Algebraic Number Theory and Fermat's Last Theorem | 131, 132, 154, 253 |
| Gerritzen L., van der Put M. — Schottky Groups and Mumford Curves | 28, 284 |
| Brickell F., Clark R.S. — Differentiable Manifolds | 101 |
| Iwaniec H., Kowalski E. — Analytic number theory | 58, 354, 396, 499, 504, 521 |
| Ito K. — Encyclopedic Dictionary of Mathematics | 234.C |
| Rudin W. — Real and complex analysis | 329 |
| Shimura G. — Introduction to Arithmetic Theory of Automorphic Functions | 15, 42 |
| Horne Clare E. — Geometric Symmetry in Patterns and Tilings | 19 |
| Gong S., Gong Y. — Concise Complex Analysis | 203 |
| Tapp K. — Matrix Groups for Undergraduates | 138 |
| Sack J.R., Urrutia J. (Ed) — Handbook of Computational Geometry | 250 |
| Bao G., Cowsar L., Masters W. — Mathematical Modeling in Optical Science | 218 |
| Lang S. — SL2: With 33 Figures | 223 |
| Al-Khalili J.S., Roeckl E. — The Euroschool Lectures on Physics with Exotic Beams, Vol. 2 | 223 |
| Zieschang H. — Surfaces and Planar Discontinuous Groups | 114, 115 |
| Fomenko À.Ò., Mishehenko A.S. — A Short Course in Differential Geometry and Topology | 153 |
| Miller W. — Symmetry Groups and Their Applications | 37 |
| Zong Ch. — Sphere packings | 51, 53 |
| Jaeger F.M. — Lectures on the principle of symmetry and its applications in all natural sciences | 131, 132 |
| Clemens C.H. — Scrapbook of Complex Curve Theory | 80, 96, 109, 110, 134 |
| Gilmore R. — Lie Groups, Lie Algebras and Some of Their Applications | 328—330 |
| Buser P. — Geometry and spectra of compact riemann surfaces | 230 |
| Kreig A. — Modular Forms on Half-Spaces of Quaternions | 6, 35, 65, 69 |
| Wakimoto M. — Infinite-Dimensional Lie Algebras | 112 |
| Eichler M. — Introduction to the Theory of Algebraic Numbers and Functions | 39 |
| Milnor J., Husemoller D. — Symmetric Bilinear Forms | 15 |
| Cohn P.M. — Algebraic Numbers and Algebraic Functions | 161 |
| Brickell F., Clark R.S. — Differentiable manifolds | 101 |
| Courant R., Hilbert D. — Methods of Mathematical Physics. Volume 1 | 48, 112 |
| Koblitz N. — Introduction to Elliptic Curves and Modular Forms | 100, 103, 105—107, 146, 231—232 |
| Lang S — Elliptic Functions | 30 |
| Humphreys J.E. — Reflection groups and Coxeter groups | 22 |
| Minoru Wakimoto — Infinite-Dimensional Lie Algebras | 112 |
| Duistermaat J.J, Kolk J.A.C. — Distributions: theory and applications | 173 |
| Goldstein L.J. — Analytic Number Theory | 152 |
| Prasolov V.V., Tikhomirov V.M. — Geometry | 187 |
| Humphreys J.E. — Introduction To Lie Algebras And Representation Theory | 52 |
| Massey W.S. — Algebraic Topology: an introduction | 185 |
| Springer G. — Introduction to Riemann Surfaces | 229 |
| Szabo R.J. — An Introduction to String Theory and D-Brane Dynamics | 54 |
| Prasolov V., Solovyev Y. — Elliptic functions and elliptic integrals | 173 |
| Farmer D.W. — Groups and symmetry: A guide to discovering mathematics | 11 |
| Silverman J. — The arithmetic of dynamical systems | 33, 127 |
| Dicks W., Dunwoody M.J. — Groups acting on graphs | 220 |
| Candel A., Conlon L. — Foliations I | 72 |
| Boerner H. — Representations of Groups | 228 |
| Humphreys J.E. — Arithmetics Groups | 12, 29 |
| Cvitanovic P., Artuso R., Dahlqvist P. — Classical and quantum chaos | 206 |
| Pilyugin S.Y. — Space of Dynamical Systems with the Co-Topology | 68 |
| Veselic I. — Integrated density of states and Wegner estimates for random Schrodinger operators | 14 |
| Zeidler E. — Oxford User's Guide to Mathematics | 578 |
| Kushkuley A., Balanov Z. — Geometric Methods in Degree Theory for Equivariant Maps | 20 |
| Guggenheimer H.W. — Plane geometry and its groups | 73 |
| Bonahon F. — Low-Dimensional Geometry: From Euclidean Surfaces to Hyperbolic Knots (Student Mathematical Library: Ias Park City Mathematical Subseries) | 192, 185—205, 259, 259—269, 296—298 |
| Mackey G. — Unitary Group Representations in Physics, Probability and Number Theory | 358 |
| Lang S. — SL2 (R) (Graduate Texts in Mathematics) | 223 |