Êíèãà | Ñòðàíèöû äëÿ ïîèñêà |
Nevanlinna R., Paatero V. — Introduction to Complex Analysis | 72 |
Ito K. — Encyclopedic Dictionary of Mathematics. Vol. 2 | 234.C |
Berger M. — A Panoramic View of Riemannian Geometry | 204 |
Di Francesco P., Mathieu P., Senechal D. — Conformal field theory | 339 |
Yale P.B. — Geometry and Symmetry | 101 |
Ash R.B. — A Course In Algebraic Number Theory | 5-1 |
Lee M.H. — Mixed Automorphic Forms, Torus Bundles, and Jacobi Forms | 68 |
Kodaira K. — Complex manifolds and deformation of complex structures | 47 |
Silverman J.H. — The arithmetic of elliptic curves | 232, 233, 243 |
Farkas H., Kra I. — Riemann Surfaces | 206 |
Springer G. — Introduction to Riemann Surfaces | 229 |
Benson D. — Mathematics and music | 215 |
Borevich Z.I., Shafarevich I.R. — Number Theory | 312 |
Artin M. — Algebra | 195 |
Bellman R. — A brief introduction to theta functions | 3—4 |
Behnke H., Bachmann F., Fladt K. — Fundamentals of Mathematics, Volume I: Foundations of Mathematics: The Real Number System and Algebra | 411 |
Knopp K. — Elements of the Theory of Functions | 116 |
Knapp A.W. — Elliptic Curves (MN-40) | 228, 260 |
Hazewinkel M. (ed.) — Handbook of Algebra, Volume 4 | 390 |
Hale J.K., Magalhaes L.T., Oliva W. — Dynamics in Infinite Dimensions | 83 |
Everest G., Ward T. — An Introduction to Number Theory | 125 |
Keen L., Lakic N. — Table of Contents Hyperbolic Geometry from a Local Viewpoint | 98, 99 |
Zoladek H. — Monodromy Group | 506 |
Ratcliffe J.G. — Foundations of Hyperbolic Manifolds | 236 |
Hall B.C. — Lie Groups, Lie Algebras, and Representations: An Elementary Understanding | 274 |
Jost J., Simha R.T. — Compact Riemann Surfaces: An Introduction to Contemporary Mathematics | 44, 46, 75 |
Devaney R.L. — An introduction to chaotic dynamical systems | 55 |
Cohen H.A. — A Course in Computational Algebraic Number Theory | 368 |
Cohn P.M. — Algebraic numbers and algebraic functions | 161 |
Platonov V., Rapinchuk A. — Algebraic groups and number theory | 163 |
Stewart I., Tall D. — Algebraic Number Theory and Fermat's Last Theorem | 131, 132, 154, 253 |
Gerritzen L., van der Put M. — Schottky Groups and Mumford Curves | 28, 284 |
Brickell F., Clark R.S. — Differentiable Manifolds | 101 |
Iwaniec H., Kowalski E. — Analytic number theory | 58, 354, 396, 499, 504, 521 |
Ito K. — Encyclopedic Dictionary of Mathematics | 234.C |
Rudin W. — Real and complex analysis | 329 |
Shimura G. — Introduction to Arithmetic Theory of Automorphic Functions | 15, 42 |
Horne Clare E. — Geometric Symmetry in Patterns and Tilings | 19 |
Gong S., Gong Y. — Concise Complex Analysis | 203 |
Tapp K. — Matrix Groups for Undergraduates | 138 |
Sack J.R., Urrutia J. (Ed) — Handbook of Computational Geometry | 250 |
Bao G., Cowsar L., Masters W. — Mathematical Modeling in Optical Science | 218 |
Lang S. — SL2: With 33 Figures | 223 |
Al-Khalili J.S., Roeckl E. — The Euroschool Lectures on Physics with Exotic Beams, Vol. 2 | 223 |
Zieschang H. — Surfaces and Planar Discontinuous Groups | 114, 115 |
Fomenko À.Ò., Mishehenko A.S. — A Short Course in Differential Geometry and Topology | 153 |
Miller W. — Symmetry Groups and Their Applications | 37 |
Zong Ch. — Sphere packings | 51, 53 |
Jaeger F.M. — Lectures on the principle of symmetry and its applications in all natural sciences | 131, 132 |
Clemens C.H. — Scrapbook of Complex Curve Theory | 80, 96, 109, 110, 134 |
Gilmore R. — Lie Groups, Lie Algebras and Some of Their Applications | 328—330 |
Buser P. — Geometry and spectra of compact riemann surfaces | 230 |
Kreig A. — Modular Forms on Half-Spaces of Quaternions | 6, 35, 65, 69 |
Wakimoto M. — Infinite-Dimensional Lie Algebras | 112 |
Eichler M. — Introduction to the Theory of Algebraic Numbers and Functions | 39 |
Milnor J., Husemoller D. — Symmetric Bilinear Forms | 15 |
Cohn P.M. — Algebraic Numbers and Algebraic Functions | 161 |
Brickell F., Clark R.S. — Differentiable manifolds | 101 |
Courant R., Hilbert D. — Methods of Mathematical Physics. Volume 1 | 48, 112 |
Koblitz N. — Introduction to Elliptic Curves and Modular Forms | 100, 103, 105—107, 146, 231—232 |
Lang S — Elliptic Functions | 30 |
Humphreys J.E. — Reflection groups and Coxeter groups | 22 |
Minoru Wakimoto — Infinite-Dimensional Lie Algebras | 112 |
Duistermaat J.J, Kolk J.A.C. — Distributions: theory and applications | 173 |
Goldstein L.J. — Analytic Number Theory | 152 |
Prasolov V.V., Tikhomirov V.M. — Geometry | 187 |
Humphreys J.E. — Introduction To Lie Algebras And Representation Theory | 52 |
Massey W.S. — Algebraic Topology: an introduction | 185 |
Springer G. — Introduction to Riemann Surfaces | 229 |
Szabo R.J. — An Introduction to String Theory and D-Brane Dynamics | 54 |
Prasolov V., Solovyev Y. — Elliptic functions and elliptic integrals | 173 |
Farmer D.W. — Groups and symmetry: A guide to discovering mathematics | 11 |
Silverman J. — The arithmetic of dynamical systems | 33, 127 |
Dicks W., Dunwoody M.J. — Groups acting on graphs | 220 |
Candel A., Conlon L. — Foliations I | 72 |
Boerner H. — Representations of Groups | 228 |
Humphreys J.E. — Arithmetics Groups | 12, 29 |
Cvitanovic P., Artuso R., Dahlqvist P. — Classical and quantum chaos | 206 |
Pilyugin S.Y. — Space of Dynamical Systems with the Co-Topology | 68 |
Veselic I. — Integrated density of states and Wegner estimates for random Schrodinger operators | 14 |
Zeidler E. — Oxford User's Guide to Mathematics | 578 |
Kushkuley A., Balanov Z. — Geometric Methods in Degree Theory for Equivariant Maps | 20 |
Guggenheimer H.W. — Plane geometry and its groups | 73 |
Bonahon F. — Low-Dimensional Geometry: From Euclidean Surfaces to Hyperbolic Knots (Student Mathematical Library: Ias Park City Mathematical Subseries) | 192, 185—205, 259, 259—269, 296—298 |
Mackey G. — Unitary Group Representations in Physics, Probability and Number Theory | 358 |
Lang S. — SL2 (R) (Graduate Texts in Mathematics) | 223 |