|
|
Результат поиска |
Поиск книг, содержащих: Diophantine equations
Книга | Страницы для поиска | Bruce C.Berndt — Ramanujan's Notebooks (part 3) | 197—200 | Falconer K. — Fractal Geometry. Mathematical Foundations and applications | 145 | Ito K. — Encyclopedic Dictionary of Mathematics. Vol. 2 | 118 | Dummit D.S., Foote R.M. — Abstract algebra | 14, 245, 276, 278 | Kisacanin B. — Mathematical problems and proofs. Combinatorics, Number theory, and Geometry | 101, 109, 112 | Barbeau E.J. — Polynomials: a problem book | 28—30,400—402, 403, 410 (E.14), 412 (E.45—E.46) | Kneebone G.T. — Mathematical Logic and the Foundation of Mathematics | 307, 322 | Konheim A.G. — Computer Security and Cryptography | 364 | Baker A. — Transcendental number theory | 36—46 | Bach E., Shallit J. — Algorithmic Number Theory (том 1) | 3, 45 | Dummit D.S., Foote R.M. — Abstract Algebra | 245, 276 | Lorentzen L., Waadeland — Continued fractions and applications | 410 | Bradley C.J. — Challenges in Geometry: For Mathematical Olympians Past and Present | 5 | Lozansky E., Rousseau C. — Winning Solutions | 56—64 | Garey M.R., Johnson D.S. — Computers and intractability. A guide to the theory of NP-completeness | 245—247,249—250. | Sandor J., Mitrinovic D.S., Crstici B. — Handbook of Number Theory II | 107 | Jones J.A., Jones J.M. — Elementary Number Theory | 13, 226 | Nasar S. — A Beautiful Mind | 45, 334 | Knuth D.E. — The art of computer programming (vol. 2 Seminumerical Algorithms) | 343—345, 354, 417, 449, 648 | Lerner K.L., Lerner B.W. — The gale encyclopedia of science (Vol. 6) | 2:1340 | Ito K. — Encyclopedic Dictionary of Mathematics | 118 | Glenn O.E. — A Treatise on the Theory of Invariants | 116 | Grace J.H., Young A. — The Algebra of Invariants | 102—106 | Hofstadter D.R. — Godel, Escher, Bach: An Eternal Golden Braid | 279, 459—460 | Soule C. — Lectures on Arakelov Geometry | 1, 50 | Knuth D.E. — The art of computer programming (Vol. 2. Seminumerical algorithms) | 326—327, 337, 359 | Olds C.D. — Continued Fractions | 31ff | Carmichael R.D. — Theory of Numbers | 84 | Herman J., Simsa J., Kucera R. — Equations and Inequalities: Elementary Problems and Theorems in Algebra and Number Theory | 217 | Alexanderson G.L. (ed.), Klosinski L.F. (ed.), Larson L.C. (ed.) — William Lowell Putnam Mathematical Competition: Problems and Solutions 1965-1984 | 1971, A—5, 1978, B-4, 1979, A—5 | Peterson J.L. — Petri net theory and the modeling of systems | 133—134 | Andrews G.E. — Number Theory | 146—147 | B.M. Stewart — Theory of Numbers | 96 | Baker A. — A Concise Introduction to the Theory of Numbers | 52, 74—91 | Averbach B., Chein O. — Problem solving through recreational mathematics | 103—104, 115, 117 | Wilf H.S., Zeilbercer D., Petkovšek M. — A=B | 6 | Geddes K., Czapor S., Labahn G. — Algorithms for computer algebra | 15 | Niven I., Zuckerman H.S. — An Introduction to the Theory of Numbers | 94 | Courant R., Robbins H. — What Is Mathematics?: An Elementary Approach to Ideas and Methods | 50—51, 487, 491 | Gullberg J. — Mathematics: from the birth of numbers | 330 | Cofman J. — What to Solve? Problems and Suggestions for Young Mathematicians | 203, 235 | Klee V., Wagon S. — Old and New Unsolved Problems in Plane Geometry and Number Theory (Dolciani Mathematical Expositions Series #11) | 174, 195—197, 204, 230—232 | Stillwell J. — Mathematics and its history | 5, 27, 31, 48, 144, 147 | Muir J. — Of Men and Numbers: The Story of the Great Mathematicians | 37 | Jones N.D. — Computability and complexity from a programming perspective | 169 | Odifreddi P., Sangalli A., Dyson F. — The Mathematical Century: The 30 Greatest Problems of the Last 100 Years | 147—148, 179, 182 | Brezinski C. — History of Continued Fractions and Padé Approximants | 28, 92, 118, 172 | Geddes K.O., Czapor S.R., Labahn G. — Algorithms for computer algebra | 15 |
|
|