|
|
Авторизация |
|
|
Поиск по указателям |
|
|
|
|
|
|
|
|
|
|
Carmichael R.D. — Theory of Numbers |
|
|
Предметный указатель |
53
30
Algebraic numbers 76
Analytical theory of numbers 83—84
Arithmetic forms 81—83
Arithmetic progression 13
Bachmann 80 82 84
Bussey 81
Carmichael 83
Circle, Division of 76
Common divisors 9 18—20 21
Composite numbers 10
Congruences 37—46
Congruences, linear 43—46 56
Congruences, Solution by trial 39—40
Congruences, with prime modulus 41—43
Descent, infinite 86
Dickson 81
Diophantine equations 84
Dirichlet 81
Divisibility 8
Divisors of a numbers 16 17
Equation 91—92
Equations, Diophantine 84
Eratosthenes 11
Euclid, heorem of 13
Euclidian algorithm 18
Euler 28 48
Euler's -function 30
Euler's criterion 59 77
Exponent of an integer 61—63
Factorization theorem 14
Factors 14 16 17 18
Fermat 28 48 86
Fermat's general theorem 47 63
Fermat's last theorem 91
| Fermat's simple theorem 48 55
Fermat's theorem extended 52—54
Forms 81—83
Fundamental notions 7
Galois imaginaries 80
Gauss 37
Greatest common factor 18—20 21
Highest power of p in n! 24—28
Imaginaries of Galois 80
Indicator 30—36
Indicator, of a prime power 30
Indicator, of a product 30—32
Indicator, of any integer 32—34
Infinite descent 86
Law of quadratic reciprocity 80
Least common multiple 20—21
Legendre symbol 77
Multiples 9 20—21
Prime each to each 9
Prime numbers 10 12 13 28—29 76 81 82
Primitive roots 61—75
Primitive roots, -roots 71—74
Primitive roots, -roots 71
Pythagorean triangles 85—90
Quadratic forms 82
Quadratic reciprocity 80
Quadratic residues 57—60 77—80
Relatively prime 10
Residue 37 58
Scales of notation 22—24
Sieve of Eratosthenes 10
Totient 30
Triangles, Numerical 85
UNIT 8
Veblen 81
Wilson's theorem 49—81
Young 81
|
|
|
Реклама |
|
|
|