| Êíèãà | Ñòðàíèöû äëÿ ïîèñêà |
| Bartle R.G. — The Elements of Integration | 3, 38 |
| Hunter J.K., Nachtergaele B. — Applied Analysis | 382 |
| Henrici P. — Applied and Computational Complex Analysis. I: Power Series, Integration, Conformal Mapping, Location of Zeros. | 181, 184 |
| Rudin W. — Principles of Mathematical Analysis | 121 |
| Ito K. — Encyclopedic Dictionary of Mathematics. Vol. 2 | 37.K 216.A |
| Allen R.L., Mills D.W. — Signal analysis. Time, frequency, scale and structure | 225—226 |
| Apostol T.M. — Mathematical Analysis | 142, 389 |
| Newman D.J. — Analytic number theory | 20 |
| Rudin W. — Real and Complex Analysis | 5, 34, 51 |
| Webster R. — Convexity | 274 |
| Steen S.W.P. — Mathematical Logic with Special Reference to the Natural Numbers | 548 |
| Widder D.V. — Advanced calculus | 120, 132, 136, 137, 138, 147, 108, 185, 180, 188, 199 |
| Smirnov V.I. — Higher mathematics. Vol.1 | 299 |
| Williamson R.E., Crowell R.H., Trotter H.F. — Calculus of vector functions | 315, 420 |
| Folland J.B. — Real Analysis: Modern Techniques and Their Applications | 57 |
| Loeve M. — Probability Theory (part 2) | 129 |
| Kriegl A., Michor P.W. — The Convenient Setting of Global Analysis | 15 |
| Debnath L., Mikusinski P. — Introduction to Hilbert Spaces with Applications | 64 |
| Behnke H., Bachmann F., Fladt K. — Fundamentals of Mathematics, Volume III: Analysis | v, 13, 53, 61, 62, 133, 527 |
| Ferguson T.S. — Mathematical Statistics. A Decision Theoretic Approach | 8, 133 |
| Bogachev V.I. — Measure Theory Vol.1 | 138 |
| Sagan H. — Advanced Calculus of Real-Valued Functions of a Real Variable and Vector-Valued Functions of a Vector Variable | See integral. |
| Polyanin A., Manzhirov A.V. — Handbook of Mathematics for Engineers and Scientists | 286 |
| Dudley R.M., Fulton W. (Ed) — Real Analysis and Probability | 29, 112, 114, 164, 173 |
| Resnick S.I. — A probability path | 139 |
| Wise G.L., Hall E.B. — Counterexamples in Probability and Real Analysis | 10, 14, 15, 20, 72, 73, 103—105, 137, 138 |
| Loeve M. — Probability Theory (part 1) | 129 |
| Pugh C.C. — Real Mathematical Analysis | 155 |
| Khuri A.I. — Advanced calculus with applications in statistics | 206, 293 |
| Royden H.L. — Real Analysis | 74 |
| Poeschel J. — Inverse Spectral Theory | 131 |
| Shreve S.E. — Stochastic Calculus for Finance 2 | 14 |
| Rall D. — Computational Solution to Nonlinear Operator Equations | 15, 122 |
| Royden H.L. — Real Analysis | 74 |
| Ito K. — Encyclopedic Dictionary of Mathematics | 37.K, 216.A |
| Shiryaev A.N. — Probability | 204 |
| Rudin W. — Real and complex analysis | 5, 34 |
| Sokolnikoff I.S. — Mathematics of Physics and Modern Engineering | 771 |
| Stakgold I. — Green's Functions and Boundary Value Problems | 36 |
| De Felice F., Clarke C.J.S. — Relativity on curved manifolds | 54 |
| Weir A.J. — Lebesgue Integration and Measure | 47, 51—54, 83 |
| Bogachev V.I. — Measure Theory Vol.2 | I: 138 |
| Strichartz R.S. — The way of analysis | 220, 270 |
| Kolmogorov A.N., Fomin S.V. — Introductory real analysis | 293 |
| De Finetti B. — Theory of probability (Vol. 1) | 125, 225, 228, 231, 234, 239 |
| Bellman R.E. — Introduction to the mathematical theory of control processes (Volume I: Linear Equations and Quadratic Criteria) | 50 |
| Munkres J.R. — Analysis on manifolds | 89 |
| Hu S.-T. — Elements of real analysis | 98 |
| Billingsley P. — Probability and Measure | 2, 25, 202, 224, 17.6, 25.14 |
| Abhyankar S.S. — Local Analytic Geometry | 23 |
| D'Angelo J.P., West D.B. — Mathematical Thinking: Problem-Solving and Proofs | 345 |
| Kuttler K. — Calculus, Applications and Theory | 559 |
| Bracewell R.N. — The Fourier Transform and its applications | 236 |
| Antia H.M. — Numerical Methods for Scientists and Engineers | 177, 201, 214, 255, 722 |
| Wheeden R.L., Zygmund A. — Measure and integral. An introduction to real analysis | 12, 85 |
| Olver P.J., Shakiban C. — Applied linear. algebra | 594 |
| Krantz S.G. — Handbook of Real Variables | 87 |
| Mazo R.M. — Brownian Motion: Flucuations, Dynamics, and Applications | 72 |
| Ash R.B., Doléans-Dade C.A. — Probability and Measure Theory | 55-59 |
| Ash R.B. — Real Variables with Basic Metric Space Topology | 93ff |
| Saxe K. — Beginning functional analysis | 54 |
| Widder D.V. — The Laplace transform | 4 |
| Socha L. — Linearization Methods for Stochastic Dynamic Systems | 16 |
| Bridges D.S. — Foundations Of Real And Abstract Analysis | 64 |
| Williamson J.H. — Lebesgue Integration | 18 |
| Adomian G. — Stochastic Systems | 20 |
| Browder A. — Mathematical Analysis: An Introduction | (see Integral) |
| Bracewell R. — The Fourier Transform and Its Applications | 236 |
| Rogosinski W.W. — Volume and integral | 4.5, 6.6 |
| Hermann R. — Differential geometry and the calculus of variations | 51, 53, 58, 60 |
| David O.Tall — Advanced Mathematical Thinking | 227, 237 |
| Aliprantis C. — Principles of real analysis | 180, 187 |
| Przeworska-Rolewicz D., Rolewicz S. — Equations in linear spaces | 153 |
| Semadini Z. — Banach Spaces of Continuous Functions. Vol. 1 | 265 |
| Choquet-Bruhat Y., DeWitt-Morette C., Dillard-Bleick M. — Analysis, manifolds and physics. Part I. | 32, 47 |
| Hamming R.W. — Art of Probability for Scientists and Engineers | 191 |
| John Strikwerda — Finite difference schemes and partial differential equations | 416 |
| Lin Y. — General Systems Theory: A Mathematical Approach | 326 |
| Courant R., John F. — Introduction to Calculus and Analysis. Volume 1 | 128, 199 |
| De Finetti B. — Theory of Probability. A critical introductory treatment | 125, 225, 228, 231, 234, 239 |
| Marsden J., Weinstein A. — Calculus 1 | 220 |
| Stakgold I. — Green's functions and boundary value problems | 36 |
| Hewitt E., Stromberg K. — Real and abstract analysis: a modern treatment of the theory of functions of a real variable | 107 |
| Audichya A. — Mathematics: Marvels and milestones | 159 |
| Lane S.M. — Mathematics, form and function | 178 |
| Tenenbaum M., Pollard H. — Ordinary differential equations: an elementary textbook for students of mathematics, engineering, and the sciences | 70 |
| Percival D.B., Walden A.T. — Wavelet methods for time series analysis | 6 |
| Cloud M.J., Drachman B.C. — Inequalities: with applications to engineering | 21 |
| Bear H.S. — A Primer of Lebesgue Integration | 1 |
| Bichteler K. — Integration Theory | 1A, 1 |
| Kanwal R.P. — Linear Integral Equations: Theory and Techniques | 4, 173, 175 |
| Krall A.M. — Hilbert Space, Boundary Value Problems, and Orthogonal Polynomials | 8 |
| Ponstein J. — Nonstandart Analysis | 118 |
| Behnke H., Bachmann F., Fladt K. — Fundamentals of mathematics. Volume III. Analysis | v, 13, 53, 61, 62, 133, 527 |
| Percival D., Walden A. — Spectral Analysis for Physical Applications | 34, 250 |
| Blum E.K., Lototsky S.V. — Mathematics of Physics and Engineering | 130—131 |
| Cooper R.B. — Introduction to queueing theory | 48 |
| Derbyshire J. — Prime Obsession: Bernhard Riemann and the greatest unsolved problem in mathematics | 127 |
| Cohen G.L. — A Course in Modern Analysis and Its Applications | 58 |
| Williams D. — Probability with Martingales | (5.3) |
| Mittra R., Lee S.W. — Analytical Techniques in the Theory of Guided Waves | 74 |
| Gullberg J. — Mathematics: from the birth of numbers | 748 |
| De Barra G — Measure theory and integration | 55, 71, 208 |
| Stillwell J. — Mathematics and its history | 217, 317, 318, 320 |
| Burden R.L., Faires J.D. — Numerical analysis | 5 |
| Steen S. — Mathematical Logic with Special Reference to the Natural Numbers | 548 |
| Blanchard P., Bruening E. — Mathematical Methods in Physics: Distributions, Hilbert Space Operators, and Variational Method | 311 |
| Hubbard B. — The World According to Wavelets: The Story of a Mathematical Technique in the Making | 216—219 |
| Cheney W. — Analysis for Applied Mathematics | 43 |
| Choquet-Bruhat Y., Dewitt-Morette C. — Analysis, manifolds and physics | 32, 47 |
| Mac Lane S. — Mathematics: Form and Function | 153 |
| D'Angelo J.P., West D.B. — Mathematical thinking: problem-solving and proofs | 345 |
| Odifreddi P., Sangalli A., Dyson F. — The Mathematical Century: The 30 Greatest Problems of the Last 100 Years | 31—32 |
| Dennery P., Krzywicki A. — Mathematics for Physicists | 185—186 |
| Steen S. — Mathematical Logic | 548 |
| Alexanderson G. — The harmony of the world: 75 years of Mathematics Magazine MPop | 129, 131 |
| Truss J.K. — Foundations of Mathematical Analysis | 148, 152, 269 |
| Truss J. — Foundations of mathematical analysis | 148, 152, 269 |
| J. K. Truss — Foundations of mathematical analysis MCet | 148, 152, 269 |