Êíèãà | Ñòðàíèöû äëÿ ïîèñêà |
Kadison R.V., Ringrose J.R. — Fundamentals of the theory of operator algebras (vol. 1) Elementary Theory | 53 |
Rudin W. — Fourier Analysis on Groups | 266, 267 |
Hunter J.K., Nachtergaele B. — Applied Analysis | 191 |
Evans L.C. — Partial Differential Equations | 284, 298, 299 |
Allen R.L., Mills D.W. — Signal analysis. Time, frequency, scale and structure | 209 |
Connes A. — Noncommutative geometry | V.2 |
Kuttler K. — Introduction to linear algebra for mathematicians | 222 |
Rudin W. — Real and Complex Analysis | 34, 40, 131, 234, 256, 393 |
Axler S., Bourdon p., Ramey W. — Harmonic function theory | 111 |
Hochstadt H. — Integral Equations (Pure & Applied Mathematics Monograph) | 125 |
Stein E.M. — Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscilattory Integrals | 143 |
Folland J.B. — Real Analysis: Modern Techniques and Their Applications | 212, 223 |
Brin M., Stuck G. — Introdution to dynamical system | 85 |
Douglas R.G. — Banach algebra techniques in operator theory | 72 |
Winkler G. — Stochastic Integrals | 1.2 |
Davies E. — Spectral Theory and Differential Operators | 37 |
Curtain R.F., Pritchard A.J. — Functional Analysis in Modern Applied Mathematics | 65 |
Halmos P.R. — Hilbert Space Problem Book | 3, 36 |
Borwein P, Erdelyi T — Polynomials and polynomial inequalities | 50 |
Murty M.R. — Problems in Analytic Number Theory | 181 |
Young R.M. — An Introduction to Non-Harmonic Fourier Series, Revised Edition | 20, 53, 91, 152 |
Hensley D. — Continued Fractions | 179 |
Gohberg I., Goldberg S. — Basic Operator Theory | 61 |
McEneaney W.M. — Max-Plus Methods for Nonlinear Control and Estimation | 29 |
Krantz S.G. — Function Theory of Several Complex Variables | 50 |
Berberian S.K. — Fundamentals of Real Analysis | 327, 341 |
Kline M. — Mathematical Thought from Ancient to Modern Times, Vol. 1 | 108 |
Weickert J. — Visualization and Processing of Tensor Fields: Proceedings of the Dagstuhl Workshop | 5 |
Jost J., Simha R.T. — Compact Riemann Surfaces: An Introduction to Contemporary Mathematics | 83 |
Atkinson K.E., Han W. — Theoretical Numerical Analysis: A Functional Analysis Framework | 82 |
Sandor J., Mitrinovic D.S., Crstici B. — Handbook of Number Theory II | 185 |
Ziemer W.P. — Weakly Differentiable Functions: Sobolev Spaces and Functions of Bounded Variation | 4.3(186) |
Royden H.L. — Real Analysis | 121, 246, 310 |
Walters P. — Ergodic Theory: Introductory Lectures | 130 |
Rudin W. — Functional analysis | 53 |
Intriligator M.D., Arrow K.J. — Handbook of Mathematical Economics (vol. 4) | 1651 |
Royden H.L. — Real Analysis | 121, 246, 310 |
Boas R.P. — A Primer of Real Functions | 233—236 |
Szekeres P. — A Course in Modern Mathematical Physics: Groups, Hilbert Space and Differential Geometry | 342, 369 |
Kline M. — Mathematical Thought from Ancient to Modern Times, Vol. 3 | 1085 |
Taylor J.C. — An Introduction to Measure and Probability | 217 |
Bichteler K. — Integration - a functional approach | 64 |
Rudin W. — Real and complex analysis | 34, 40, 130 |
Lin I.H. — Geometric Linear Algebra. Vol. 1 | 780; see “Inner product space” |
Duffie D. — Security Markets. Stochastic Models | 62 |
Denker M., Grillenberger Ch., Sigmund K. — Ergodic Theory on Compact Spaces | 9 |
Bachman G., Beckenstein E. — Fourier And Wavelet Analysis | 132 |
Stakgold I. — Green's Functions and Boundary Value Problems | 292, 294 |
Kline M. — Mathematical Thought from Ancient to Modern Times, Vol. 2 | 1085 |
Kadison R.V., Ringrose J.R. — Fundamentals of the Theory of Operator Algebras (vol. 2) Advanced Theory | 53 |
Hinton D., Schaefer P.W. — Spectral Theory and Computational Methods of Sturm-Liouville Problems | 189 |
Kolmogorov A.N., Fomin S.V. — Introductory real analysis | 374 |
Chan T., Shen J. — Image Processing and Analysis: Variational, PDE, Wavelet, and Stochastic Methods | 95, 96 |
Havin V.P., Nikolski N.K. (eds.) — Linear and Complex Analysis Problem Book 3 (part 2) | 1.17 |
Bellman R.E. — Introduction to the mathematical theory of control processes (Volume I: Linear Equations and Quadratic Criteria) | 224 |
Baladi V. — Positive Transfer Operators And Decay Of Correlations | 33 |
Graham C.C., McGehee O.C. — Essays in Commutative Harmonic Analysis | see “Theorem” |
Hu S.-T. — Elements of real analysis | 247 |
Young R.M. — An Introduction to Nonharmonic Fourier Series | 20, 53, 91, 152 |
Tarantola A. — Inverse problem theory and methods for model parameter estimation | 109, 241 |
Courant R., Hilbert D. — Methods of Mathematical Physics, Vol. 2 | 453(ftn) |
Aczel J., Dhombres J. — Functional equations in several variables with applications to mathematics, information theory and to the natural and social sciences | 135, 146, 154 |
Axellson O., Barker V.A. — Finite Element Solution of Boundary Value Problems. Theory and Computation | 105 |
Ike E.R., Sabatier P.C. (Ed) — Scattering: Scattering and Inverse Scattering in Pure and Applied Science | 331 |
Kaiser D. — A Friendly Guide to Wavelets | 24 |
Simmons G.F. — Introduction to topology and modern analysis | 226 |
Ash R.B., Doléans-Dade C.A. — Probability and Measure Theory | 144, 147 |
Conway J.B. — A Course in Functional Analysis | 12, 78, 389 |
Prestel A., Delzell C.N. — Positive Polynomials: From Hilbert's 17th Problem to Real Algebra (Springer Monographs in Mathematics) | 153 |
Berg C., Christensen J.P., Ressel P. — Harmonic Analysis On Semigroups | 39, 64 |
Ralph P. Boas Jr, Alexanderson G.L., Mugler D.H. — Lion Hunting and Other Mathematical Pursuits | 249 |
Kaiser G. — Friendly Guide to Wavelets | 24 |
Bridges D.S. — Foundations Of Real And Abstract Analysis | 252 |
Williamson J.H. — Lebesgue Integration | 106 |
Goffman C., Pedrick G. — First course in functional analysis | 96 |
Schechter M. — Operator methods in quantum mechanics | 20 |
Aliprantis C. — Principles of real analysis | 355 |
Semadini Z. — Banach Spaces of Continuous Functions. Vol. 1 | 312 |
Choquet-Bruhat Y., DeWitt-Morette C., Dillard-Bleick M. — Analysis, manifolds and physics. Part I. | 56 |
Dym H., McKean H.P. — Fourier Series and Integrals | 29, 38 |
Amrein W.O., Sinha K.B., Jauch J.M. — Scattering Theory in Quantum Mechanics: Physical Principles and Mathematical Methods | 29, 97 |
Douglas R.G. — Banach algebra techniques in operator theory | 72 |
Kuttler K.L. — Modern Analysis | 496 |
Stakgold I. — Green's functions and boundary value problems | 292, 294 |
Hewitt E., Stromberg K. — Real and abstract analysis: a modern treatment of the theory of functions of a real variable | 177, 364 |
Walters P. — An introduction to ergodic theory | 148 |
Candel A., Conlon L. — Foliations I | 376—377 |
Howes N.R — Modern Analysis and Topology | 260, 261, 387 |
Cohen G.L. — A Course in Modern Analysis and Its Applications | 273, 282 |
Pier J.-P. — Mathematical Analysis during the 20th Century | 51 |
Dineen S. — Complex Analysis of Infinite Dimensional Spaces | 61, 75, 104, 166 |
Walters P. — Ergodic Theory — Introduction Lectures | 130 |
Glimm J., Jaffe A. — Quantum Physics: A Functional Integral Point of View | 124, 126 |
Kantorovitz Sh. — Spectral Theory of Banach Space Operators | 124 |
Dym H., McKean H. — Fourier Series and Integrals (Probability & Mathematical Statistics Monograph) | 29, 38, see also "Exercise 4.28", "Exercise 4.3.3" |
Lions J-L., Dautray R. — Mathematical Analysis and Numerical Methods for Science and Technology: Volume 2: Functional and Variational Methods | 302 |
Cheney W. — Analysis for Applied Mathematics | 81 |
Fuchssteiner B., Lusky W. — Convex Cones (North-Holland Mathematics Studies) | 37, 204, 208, 227, 392 |
Morrison T.M. — Functional Analysis: An Introduction to Banach Space Theory | 54—56 |
Stakgold I. — Boundary value problems of mathematical physics | 136 |
Golan J.S. — The Linear Algebra a Beginning Graduate Student Ought to Know (Texts in the Mathematical Sciences) | 338 |
Choquet-Bruhat Y., Dewitt-Morette C. — Analysis, manifolds and physics | 56 |
Kline M. — Mathematical thought from ancient to modern times | 1085 |