Êíèãà | Ñòðàíèöû äëÿ ïîèñêà |
Kadison R.V., Ringrose J.R. — Fundamentals of the theory of operator algebras (vol. 1) Elementary Theory | 31, 32, 33, 34, 163, 164, 373 |
Bartle R.G. — The Elements of Real Analysis | 66 |
van der Dries L. — Tame topology and O-minimal structures | 120 |
Lang S. — Algebra | 883 |
Roberts A.W., Varberg D.E. — Convex Functions | 84, 86, 145, 200, 208, 269 |
Hewitt E., Ross K.A. — Abstract Harmonic Analysis (Vol. 1) | 459 |
Rudin W. — Real and Complex Analysis | 238 |
Axler S., Bourdon p., Ramey W. — Harmonic function theory | 140 |
De Branges L. — Hilbert Spaces of Entire Functions | vii, 270, 316 |
Hewitt E., Ross K.A. — Abstract Harmonic Analysis (Vol. 2) | 459 I |
Webster R. — Convexity | 80 |
Pommerenke C. — Univalent functions (Studia mathematica) | 181, 183 |
Schneider R. — Convex Bodies: The Brunn-Minkowski Theory | 18, 65 |
Hormander L. — Notions of Convexity | 43 |
Landsman N.P. — Mathematical topics between classical and quantum mechanics | 61 |
Fletcher R. — Practical methods of optimization. Volume 2: constrained optimization | 13, 64, 77, 78 |
Brin M., Stuck G. — Introdution to dynamical system | 86 |
Douglas R.G. — Banach algebra techniques in operator theory | 28, 78 |
Halmos P.R. — Hilbert Space Problem Book | 4, 136 |
Lawler E.L. — Combinatorial Optimization: Networks and Matroids | 51 |
Engel K. — Sperner theory | 84 |
Reich S., Shoikhet D. — Nonlinear Semigroups, Fixed Points, and Geometry of Domains in Banach Spaces | 18, 58 |
Auslender A., Teboulle M. — Asymptotic Cones and Functions in Optimization and Variational Inequalities | 8 |
F.Giannessi, F.Giannessi — Constrained Optimization and Image Space Analysis | 48 |
Hogben L. — Handbook of Linear Algebra | 50—13 |
Bapat R.B., Raghavan T.E., Rota G.C. (Ed) — Nonnegative Matrices and Applications | 60 |
Dacorogna B. — Direct Methods in the Calculus of Variations | 42, 43, 70 |
Winkler G. — Choquet Order and Simplices | 10 |
Aliprantis Ch.D. — Positive Operators | 25, 37, 137 |
Phelps R.R. — Convex Functions, Monotone Operators and Differentiability | 76 |
Sahoo P.K., Riedel T. — Mean Value Theorems and Functional Equations | 164 |
Royden H.L. — Real Analysis | 206 |
Rudin W. — Functional analysis | 70, 286 |
Royden H.L. — Real Analysis | 206 |
Lang S. — Real Analysis | 86 |
Elberly D.H., Shoemake K. — Game Physics | 302—303 |
Lipschutz S.Ph.D. — Schaum's outline of theory and problems of finite mathematics | 282 |
Nagel R., Derdinger R., Günther P. — Ergodic theory in the perspective of functional analysis | B/2 |
Rudin W. — Real and complex analysis | 251 |
van Eijndhoven S.J.L., de Greef J. — Trajectory Spaces, Generalized Functions and Llnbounded Operators | 200 |
Guggenheimer H.W. — Applicable Geometry | 38 |
Halmos P.R. — Finite-Dimensional Vector Spaces | 162 |
Sheil-Small T. — Complex polynomials | 287 |
Kadison R.V., Ringrose J.R. — Fundamentals of the Theory of Operator Algebras (vol. 2) Advanced Theory | 31—34, 163, 164, 373 |
Klerk de E. — Aspects of Semidefinite Programming | 190 |
Havin V.P., Nikolski N.K. (eds.) — Linear and Complex Analysis Problem Book 3 (part 2) | 1.5, 1.19, 2.31, 17.13, 18.15 |
Köthe G. — Topological vector spaces I | 330, 337, 338, 340, 346 |
Granas A., Dugundji J. — Fixed Point Theory | 603 |
Grünbaum B. — Convex Polytopes | 17, 30a |
Aczel J., Dhombres J. — Functional equations in several variables with applications to mathematics, information theory and to the natural and social sciences | 129, 130, 3, 137, 138, 146, 147, 161 |
Kincaid D., Cheney W. — Numerical analysis: mathematics of scientific computing | 639 |
Goodearl K.R. — Von neumann regular rings (monographs and studies in mathematics) | 335 |
Seul M., O'Gorman L., Sammon M.J. — Practical algorithms for image analysis. Description, examples, and code | 157 |
Doran R.S., Wichmann J. — Approximate Identities and Factorization in Banach Modules | 256, 257 |
Conway J.B. — A Course in Functional Analysis | 145, 281 |
Anderson G.A., Granas A. — Fixed Point Theory | 603 |
Lang S. — Real and Functional Analysis (Graduate Texts in Mathematics Series #142) | 86 |
Neumann M., Berman A., Stern R.J. — Nonnegative matrices in dynamic systems | 2 |
Tuy H. — Convex analysis and global optimization | 24 |
Larsen R. — Banach algebras: An Introduction | 233 |
Walley P. — Statistical reasoning with imprecise probabilities | 146, 613 |
Bridges D.S. — Foundations Of Real And Abstract Analysis | 277 |
Bloomfield P., Steiger W. — Least Absolute Deviations | 19 |
Nicholson W.K. — Linear Algebra with Applications | 486 |
Lang S. — Algebra | 883 |
Valentine F.A. — Convex Sets | 137 |
Kreyszig E. — Introductory functional analysis with applications | 336 |
Bourgin R.D. — Geometric Aspects of Convex Sets with the Radon-Nikodym Property | 17, 39, 40, 41, 50, 61, 67, 74, 181, 204, 214, 215, 225, 306, 331, 341, 345, 414 |
Bapat R.B., Raghavan T.E.S. — Nonnegative Matrices and Applications | 60 |
Abramovich Y.A., Aliprantis C.D. — An Invitation to Operator Theory | 490 |
DeGroot M.H. — Optimal statistical decisions | 131 |
Gelbaum B.R. — Problems in Real and Complex Analysis | 2.3. 25 |
Douglas R.G. — Banach algebra techniques in operator theory | 28, 78 |
Dawson D. — Introduction to Markov Chains | 57 |
Kirillov A.A., Gvishiani A.D., McFaden H.H. — Theorems and Problems in Functional Analysis | 56 |
Georgii H.O. — Canonical Gibbs Measures: Some Extensions of de Finetti's Representation Theorem for Interacting Particle Systems | 11 |
Bjorner A. — Oriented Matroids | 111, 300 |
Strang G. — Introduction to Applied Mathematics | 667 |
Bjorner A., Vergnas M., Sturmfels B. — Oriented Matroids, Second edition (Encyclopedia of Mathematics and its Applications) | 111, 300 |
Robinson S.M. — Convexity and Monotonicity in Finite-Dimensional Spaces | 74 |
Intriligator M.D. — Mathematical optimization and economic theory | 461 |
Lang S. — Linear Algebra | 369 |
Dineen S. — Complex Analysis of Infinite Dimensional Spaces | 70, 128, 451 |
Floret K. — Weakly Compact Sets | 5, 16, 98, 112 |
Foulds L.R. — Combinatorial optimization for undergraduates | 20 |
Magaril-Il'yaev G.G., Tikhomirov V.M. — Convex Analysis: Theory and Applications | 154 |
Hammerlin G., Hoffmann K.-H., Schumaker L.L. — Numerical Mathematics | 377 |
Singh R., Manhas J. — Composition Operators on Function Spaces (North-Holland Mathematics Studies) | 166 |
Burgisser P., Clausen M., Shokrollahi M.A. — Algebraic complexity theory | 275 |
Fuchssteiner B., Lusky W. — Convex Cones (North-Holland Mathematics Studies) | 80, 142, 170, 256, 267, 340, 378 |
Abramovich Y., Aliprantis C. — An Invitation to Operator Theory (Graduate Studies in Mathematics, V. 50) | 490 |
Klein E. — Mathematical methods in theoretical economics | 329 |
Leader S. — The Kurzweil-Henstock integral and its differentials | 330 |