Êíèãà | Ñòðàíèöû äëÿ ïîèñêà |
Weintraub S. — Differential Forms. A complement to vector calculus | |
Kedlaya K.S., Poonen B., Vakil R. — The William Lowell Putnam Mathematical Competition 1985–2000: Problems, Solutions, and Commentary | 138, 176 |
Taylor M.E. — Partial Differential Equations. Basic theory (vol. 1) | 4 |
Hunter J.K., Nachtergaele B. — Applied Analysis | 384 |
Rudin W. — Principles of Mathematical Analysis | 134, 324 |
Keisler H.J. — Elementary calculus | 193 |
Ito K. — Encyclopedic Dictionary of Mathematics. Vol. 2 | 216.C |
Graham R.L., Knuth D.E., Patashnik O. — Concrete mathematics | 48 |
Mauch S. — Introduction to Methods of Applied Mathematics or Advanced Mathematical Methods for Scientists and Engineers | 78 |
Brauer F., Nohel J.A. — The qualitative theory of ordinary differential equations | 24, 53, 109, 241 |
Latrve D.R., Kreider D.L., Proctor T.G. — Hp-48G/Gx Investigations in Mathematics | 138, 139 |
Mathews J.H., Fink K.D. — Numerical Methods Using MATLAB | 6 |
Coutinho S.C. — A primer of algebraic D-modules | 184 |
Reade J.B. — Calculus with Complex Numbers | 36 |
Rudin W. — Real and Complex Analysis | 165 |
Porter D., Stirling D.S.G. — Integral equations: a practical treatment, from spectral theory to applications | 360 |
Benson D. — Mathematics and music | 368 |
Williamson R.E., Crowell R.H., Trotter H.F. — Calculus of vector functions | 122, 163 |
Folland J.B. — Real Analysis: Modern Techniques and Their Applications | 106 |
Kriegl A., Michor P.W. — The Convenient Setting of Global Analysis | 17 |
Kay S.M. — Intuitive Probability and Random Processes using MATLAB | 310, 786 |
Braselton J.P. — Maple by Example | 139 |
Estep D.J. — Practical Analysis in One Variable | 333, 334, 343, 481, 487 |
Dudley R.M., Fulton W. (Ed) — Real Analysis and Probability | 228—229 |
Devlin K.J. — Language of Mathematics: Making the Invisible Visible | 128 |
Tarkhanov N.N. — Cauchy Problem for Solutions of Elliptic Equations | 107 |
Prevot C., Rockner M. — Concise Course on Stochastic Partial Differential Equations | 108 |
Sahoo P.K., Riedel T. — Mean Value Theorems and Functional Equations | 31, 207 |
Pugh C.C. — Real Mathematical Analysis | 171 |
Bolstad W.M. — Introduction to Bayesian Statistics | 346 |
Stillwell J. — Yearning for the Impossible: The Surprising Truths of Mathematics | 96 |
Khuri A.I. — Advanced calculus with applications in statistics | 219 |
Vick J.W. — Homology theory. An introduction to algebraic topology | 80 |
Fripp A., Fripp J., Fripp M. — Just-in-Time Math for Engineers | 151—156 |
Elberly D.H., Shoemake K. — Game Physics | 703 |
Burn R.P. — Numbers and Functions: Steps to Analysis | 10.54, 10H |
Bichteler K. — Integration - a functional approach | 154 |
Rudin W. — Real and complex analysis | 144, 148 |
Pedregal P. — Introduction to Optimization | 183 |
Gong S., Gong Y. — Concise Complex Analysis | 2 |
von zur Gathen J., Gerhard J. — Modern computer algebra | 611 |
Goldber M.A. (ed.) — Numerical Solution of Integral Equations | 136 |
Libai A., Simmonds J.G. — The Nonlinear Theory of Elastic Shells | 25, 166, 395 |
Spivak M. — A Comprehensive Introduction to Differential Geometry (Vol.1) | 254 |
Munkres J.R. — Analysis on manifolds | 98 |
Hu S.-T. — Elements of real analysis | 345 |
Bak J., Newman D.J. — Complex Analysis | 49 |
Billingsley P. — Probability and Measure | 227, 419 |
Barwise J. (ed.) — Handbook of Mathematical Logic | 214 |
Kuttler K. — Calculus, Applications and Theory | 233 |
Olver P.J., Shakiban C. — Applied linear. algebra | 337, 345, 608 |
Young R.M. — Excursions in Calculus: An Interplay of the Continuous and the Discrete | 355 |
Krantz S.G. — Handbook of Real Variables | 92, 93 |
Binmore K. — Fun and Games: A Text on Game Theory | 513 |
Bluman G.W. — Problem Book for First Year Calculus | (II.4; 5; VII.15,16; VIII.2.7-2.9), [VI.15; VIII.2.19-2.25, 3.35] |
Bonar D.D., Khoury M.J. — Real Infinite Series | 22 |
Marsden J., Weinstein A. — Calculus unlimited | 171 |
Ash R.B. — Real Variables with Basic Metric Space Topology | 104—105 |
Saxe K. — Beginning functional analysis | 56 |
Petersen K.E. — Ergodic theory | 90, 91 |
Moh T.T. — Algebra | 183 |
Simmons G.F. — Differential Equations with Applications and Historical Notes | 5n |
Bridges D.S. — Foundations Of Real And Abstract Analysis | 68, 69 |
de Souza P.N., Silva J.-N. — Berkeley Problems in Mathematics | 170, 248 |
Browder A. — Mathematical Analysis: An Introduction | 110, 111 |
Harman T.L., Dabney J.B., Richert N.J. — Advanced Engineering Mathematicas with MATLAB | 643 |
Riley, Hobson — Mathematical Methods for Physics and Engineering | 62—63 |
David O.Tall — Advanced Mathematical Thinking | 105, 107 |
Kinsey L.C. — Topology of surfaces | 244 |
Devaney R.L., Keen L. — Chaos and Fractals: The Mathematics Behind the Computer Graphics | 121 |
Lin Y. — General Systems Theory: A Mathematical Approach | 346 |
Courant R., John F. — Introduction to Calculus and Analysis. Volume 1 | 185, 187, 188 |
Marsden J., Weinstein A. — Calculus 1 | 4, 225, 237 |
Katz V.J. — A History of Mathematics: An Introduction | 498—503, 719 |
Moh T.T. — Algebra | 183 |
Audichya A. — Mathematics: Marvels and milestones | 155 |
Loomis L.H., Sternberg S. — Advanced calculus | 238 |
Lane S.M. — Mathematics, form and function | 177 |
Tenenbaum M., Pollard H. — Ordinary differential equations: an elementary textbook for students of mathematics, engineering, and the sciences | 70 |
Kuttler K. — Notes for Partial Differrential Equations | 24 |
Barry Steven, Davis Stephen — Essential Mathematical Skills: For Students of Engineering, Science and Applied Mathematics | 53 |
Bear H.S. — A Primer of Lebesgue Integration | 73 |
Griffits D.J. — Introductions to electrodynamics | 28 |
Zeidler E. — Applied Functional Analysis: Applications to Mathematical Physics | 119 |
Golberg M.A. — Numerical Solution of Integral Equations | 136 |
Hadlock C.R. — Field theory and its classical problems | 50, 247 |
Hassani S. — Mathematical Methods: for Students of Physics and Related Fields | 87 |
Gullberg J. — Mathematics: from the birth of numbers | 748 |
Spivak M. — Calculus on Manifolds: A Modern Approach to Classical Theorems of Advanced Calculus | 100—104 |
Stillwell J. — Mathematics and its history | 110, 131 |
Oldham K., Spanier J. — The fractional Calculus: Theory and applications of differentiation and integration to arbitrary order | 30 |
Blanchard P., Bruening E. — Mathematical Methods in Physics: Distributions, Hilbert Space Operators, and Variational Method | 392 |
Schutz B. — Geometrical Methods in Mathematical Physics | 134 |
Truss J.K. — Foundations of Mathematical Analysis | 154, 158 |
Truss J. — Foundations of mathematical analysis | 154, 158 |
J. K. Truss — Foundations of mathematical analysis MCet | 154, 158 |
Souza P., Silva J., Souza P. — Berkeley Problems in Mathematics | 149 |
Souza P., Silva J., Souza P. — Berkeley Problems in Mathematics | 149 |
Sondheimer E., Rogerson A. — Numbers and Infinity: A Historical Account of Mathematical Concepts | 115 |