Êíèãà | Ñòðàíèöû äëÿ ïîèñêà |
Bartle R.G. — The Elements of Integration | 9 |
Bartle R.G. — The Elements of Real Analysis | 146 |
Apostol T.M. — Calculus (vol 1) | 130 |
Henrici P. — Applied and Computational Complex Analysis. I: Power Series, Integration, Conformal Mapping, Location of Zeros. | 73 |
Gray R.M. — Probability, Random Processes and Ergodic Properties | 52 |
Rudin W. — Principles of Mathematical Analysis | 85 |
Girard J.-Y., Taylor P., Lafont Y. — Proofs and Types | 55, 58 |
Meirovitch L. — Methods of analytical dynamics | 497 |
Messer R. — Linear Algebra: Gateway to Mathematics | 44 |
Lightstone A.H., Robinson A. — Nonarchimedean Fields and Asymptotic Expansions | 61, 62 |
Rudin W. — Real and Complex Analysis | 8 |
Graves L.M. — Theory of Functions of Real Variables | 63 |
Isham J. — Modern Differential Geometry for Physics | 49 |
Ahlfors L.V. — Complex analysis | 23, 64—67 |
Artin M. — Algebra | 594 |
Behnke H., Bachmann F., Fladt K. — Fundamentals of Mathematics, Volume III: Analysis | 26 |
Behnke H., Bachmann F., Fladt K. — Fundamentals of Mathematics, Volume I: Foundations of Mathematics: The Real Number System and Algebra | 462 |
Behnke H., Bachmann F., Fladt K. — Fundamentals of Mathematics, Volume II: Geometry | 642 |
Small Ch.G. — Functional Equations and how to Solve Them | 7—9, 18, 25—28, 31, 33—35, 37—40, 43—45, 49—51, 58, 59, 69, 70, 75, 76, 78, 101 |
Estep D.J. — Practical Analysis in One Variable | 83, 442 |
Street R., Murray M. (Ed), Broadbridge Ph. (Ed) — Quantum Groups: A Path to Current Algebra | 5 |
Kaczynski T., Mischaikow K.M. — Computational Homology | 407 |
Sagan H. — Advanced Calculus of Real-Valued Functions of a Real Variable and Vector-Valued Functions of a Vector Variable | 91, 231 |
Polyanin A., Manzhirov A.V. — Handbook of Mathematics for Engineers and Scientists | 243 |
Searcid M. — Metric Spaces | 131 |
Ablowitz M.J., Fokas A.S. — Complex Variables: Introduction and Applications | 22, 72 |
Lange K. — Optimization | 30 |
Morris S.A. — Topology without tears | 77 |
Bolstad W.M. — Introduction to Bayesian Statistics | 337 |
Khuri A.I. — Advanced calculus with applications in statistics | 67, 210, 264 |
Franklin J., Daoud A. — Introduction to Proofs in Mathematics | 34, 42, 104 |
Shiffer M.M., Bowden L. — Role of Mathematics in Science | 144,173 |
Spivak M. — Calculus | 101 ff. |
Royden H.L. — Real Analysis | 44, 132, 144 |
Brickell F., Clark R.S. — Differentiable Manifolds | 4 |
Royden H.L. — Real Analysis | 44, 132, 144 |
Steenrod N.E. — First Concepts of Topology | 8, 17 |
Jauch J.M. — Foundations of quantum mechanics | 11 |
Burn R.P. — Numbers and Functions: Steps to Analysis | 6.18 |
Hardy G.H. — A course of pure mathematics | 171 et seq. |
Rudin W. — Real and complex analysis | 8 |
Carmo M.P. — Differential geometry of curves and surfaces | 119 |
Karman T., Biot A.M. — Mathematical Methods in Engineering | 472 |
Weir A.J. — Lebesgue Integration and Measure | 46—50, 79—81, 228—238 |
Newman J.R. (ed.) — The World of Mathematics, Volume 4 | 2410 |
Pap E. — Complex Analysis Through Examples And Exercises | 53 |
Beckenbach E.F. (editor), Polya G., Lehmer D.H. and others — Applied combinatorial mathematics | 424 |
Govil N.K. (ed.), Mohapatra R.N. (ed.), Nashed Z. (ed.) — Approximation theory: in memory of A. K. Varma | 189 |
Port S.C., Stone C.J. — Brownian motion and classical potential theory | 16 |
Hu S.-T. — Elements of real analysis | 58, 116 |
Stenlund S. — Combinators, λ-Terms and Proof Theory | 53, 65 |
Hu S.-T. — Elements of general topology | 27 |
Chan Man Fong C.F., De Kee D., Kaloni P.N. — Advanced Mathematics for Engineering and Sciences | 2, 202 |
Olver P.J., Shakiban C. — Applied linear. algebra | 86, 271, 336, 609 |
Abramsky S., Gabbay D.M., Maibaum T.S.E. — Handbook of Logic in Computer Science: Volume 5: Logic and Algebraic Methods | 342, 451—478 |
Ash R.B. — Real Variables with Basic Metric Space Topology | 57ff |
Kurosh A. — Higher Algebra | 144 |
Murray D.A. — Differential and integral calculus | 18, 25, 35, 129 |
Lefschetz S. — Differential Equations: Geometric Theory | 5 |
Nicholson W.K. — Linear Algebra with Applications | 422 |
Browder A. — Mathematical Analysis: An Introduction | 55, 57 |
Brickell F., Clark R.S. — Differentiable manifolds | 4 |
Valentine F.A. — Convex Sets | 200 |
Harman T.L., Dabney J.B., Richert N.J. — Advanced Engineering Mathematicas with MATLAB | 276 |
Lefschetz S. — Introduction to topology | 29, 33 |
Hu S.-T. — Introduction to contemporary mathematics | 184, 192 |
David O.Tall — Advanced Mathematical Thinking | 107, 160 |
Aliprantis C. — Principles of real analysis | 38, 60 |
Antsaklis P.S., Michel A.N. — Linear Systems | 9 |
Kinsey L.C. — Topology of surfaces | 21, 42 |
Borovik A.V. — Mathematics under the microscope | 114 |
Kazarinoff N. — Analytic inequalities | 52 et seq. |
Demidovich B. (ed.) — Problems in mathematical analysis | 36 |
Courant R., John F. — Introduction to Calculus and Analysis. Volume 1 | 98, 100, 101, 166 |
Lefschetz S. — Introduction to Topology | 29, 33 |
Jauch J.M. — Foundations Of Quantum Mechanics | 11 |
Marsden J., Weinstein A. — Calculus 1 | 63 |
Hewitt E., Stromberg K. — Real and abstract analysis: a modern treatment of the theory of functions of a real variable | 73 |
Audichya A. — Mathematics: Marvels and milestones | 148, 149 |
Beckenbach E.F. (ed.) — Applied Combinatorial Mathematics | 424 |
Hsiung C.-C. — A first course in differential geometry | 6 |
Dunford N., Schwartz J., Bade W.G. — Linear operators. Part 2 | I.4.15 (13) |
Hinman P.G. — Fundamentals of Mathematical Logic | 629 |
Behnke H., Bachmann F., Fladt K. — Fundamentals of mathematics. Volume III. Analysis | 26 |
Kelley J., Namioka I. — Linear Topological Spaces | 28 |
Intriligator M.D. — Mathematical optimization and economic theory | 456 |
Zeidler E. — Oxford User's Guide to Mathematics | 250 |
Tourlakis G.J. — Lectures in Logic and Set Theory: Set Theory | 348 |
Vidyasagar M. — Nonlinear systems analysis | 13 |
Spivak M. — Calculus on Manifolds: A Modern Approach to Classical Theorems of Advanced Calculus | 12 |
Courant R. — Differential and Integral Calculus, Vol. 1 | 63, 65, 67, 68, 70 |
Burden R.L., Faires J.D. — Numerical analysis | 2, 546 |
Dunford N., Schwartz J.T., Bade W.G. — Linear Operators, Part II: Spectral Theory. Self Adjoint Operators in Hilbert Space (Pure and Applied Mathematics: A Series of Texts and Monographs) | I.4.15 13 |
Ivanov O.A. — Easy as Pi?: An Introduction to Higher Mathematics | 53, 66, 107, 134 |
Murray D.A. — A first course in infinitesimal calculus | 25, 28, 41, 130 |
Canuto C., Tabacco A. — Mathematical analysis | 76, 80, 285 |
Schiffer M.M. — The role of mathematics in science | 144, 173 |
Jorgensen P.E.T. — Analysis and Probability: Wavelets, Signals, Fractals | 7, 43, 105, 251 |