Êíèãà | Ñòðàíèöû äëÿ ïîèñêà |
Kadison R.V., Ringrose J.R. — Fundamentals of the theory of operator algebras (vol. 1) Elementary Theory | 197 |
Taylor M.E. — Partial Differential Equations. Basic theory (vol. 1) | 184, 202 |
Taylor M.E. — Partial Differential Equations. Qualitative studies of linear equations (vol. 2) | 168 |
Hunter J.K., Nachtergaele B. — Applied Analysis | 308 |
Reed M., Simon B. — Methods of Modern mathematical physics (vol. 1) Functional analysis | 327 |
Bruce C.Berndt — Ramanujan's Notebooks (part 4) | 288, 302, 316 |
Apostol T.M. — Introduction to Analytic Number Theory | 279 |
Allen R.L., Mills D.W. — Signal analysis. Time, frequency, scale and structure | 258, 413 |
Apostol T.M. — Mathematical Analysis | 313 |
Blei R. — Analysis in Integer and Fractional Dimensions | 145 |
Bender C., Orszag S. — Advanced Mathematical Methods for Scientists and Engineers | 277—278, 285, 311p |
Henrici P. — Applied and Computational Complex Analysis (Vol. 2) | 263, 265, 266, 268, 269, 277, 288, 350 |
Rudin W. — Real and Complex Analysis | 103 |
Axler S., Bourdon p., Ramey W. — Harmonic function theory | 183 |
Jones D.S. — Introduction to Asymptotics: A Treatment Using Nonstandard Analysis | 32 |
Graham R.L., Grotschel M., Lovasz L. — Handbook of combinatorics (vol. 2) | 1171 |
Hewitt E., Ross K.A. — Abstract Harmonic Analysis (Vol. 2) | 81 |
Katznelson Y. — Introduction to Harmonic Analysis | 13, 123 |
Miklowitz J. — The theory of elastic waves and waveguides | 243 |
Folland J.B. — Real Analysis: Modern Techniques and Their Applications | 249 |
Pugovecki E. — Quantum mechanics in hilbert space | 216 |
Bateman P.T., Diamond H.G. — Analytic Number Theory: An Introductory Course | 144 |
Davies E. — Spectral Theory and Differential Operators | 49 |
Debnath L., Mikusinski P. — Introduction to Hilbert Spaces with Applications | 195 |
Engel K.-J., Nagel R. — One-Parameter Semigroups for Linear Evolution Equations | 406, 526 |
Katznelson Y. — Introduction to Harmonic Analysis | 136 |
Kythe P.K., Schaferkotter M.R. — Partial Differential Equations and Mathematica | 107 |
Kurtz D.S., Swartz C.W. — Theories of Integration | 131 |
Borwein P, Erdelyi T — Polynomials and polynomial inequalities | 54 |
Borwein P., Choi S., Rooney B. — The Riemann Hypothesis | 467 |
Debnath L. — Linear Partial Differential Equations for Scientists and Engineers | 201 |
Prugovecki E. — Quantum Mechanics in Hilbert Space | 216 |
Young R.M. — An Introduction to Non-Harmonic Fourier Series, Revised Edition | 200 |
Ablowitz M.J., Fokas A.S. — Complex Variables: Introduction and Applications | 439 |
Szkelyhidi L. — Discrete Spectral Synthesis and Its Applications | 9 |
Reed M., Simon B. — Methods of Modern mathematical physics (vol. 3) Scattering theory | 10 |
Krantz S.K. — Partial Differential Equations and Complex Analysis | 27 |
Thaller B. — Visual quantum mechanics | 28 |
Kline M. — Mathematical Thought from Ancient to Modern Times, Vol. 1 | 104647 |
Engel K.-J., Nagel R. — Short Course on Operator Semigroups | 230 |
Reed M., Simon B. — Methods of Functional Analysis (in 4 volumes). Volume 1: Functional Analysis | 327 |
Spivak M. — Calculus | 303, 366 |
Reed M., Simon B. — Methods of Modern mathematical physics (vol. 4) Analysis of operators | $10^2$ |
Rudin W. — Functional analysis | 378 |
Lang S.A. — Undergraduate Analysis | 318 |
Lang S. — Real Analysis | 308 |
Brown L.S. — Quantum Field Theory | 292 |
Ablowitz M.J., Segur H. — Solitons and the Inverse Scattering Transform | 358, 368 |
Rudin W. — Real and complex analysis | 103 |
Zauderer E. — Partial Differential Equations of Applied Mathematics | 248, 297, 308 |
Staffans O. — Well-Posed Linear Systems | 349 |
Bachman G., Beckenstein E. — Fourier And Wavelet Analysis | 104 |
Stakgold I. — Green's Functions and Boundary Value Problems | 108, 122, 129, 133 |
Patterson S.J. — An introduction to the theory of the Riemann zeta-function | 111 |
Kline M. — Mathematical Thought from Ancient to Modern Times, Vol. 2 | 1046—1047 |
Weir A.J. — Lebesgue Integration and Measure | 115, 204 |
Kammler D.W. — First Course in Fourier Analysis | 81, 458 |
Strichartz R.S. — The way of analysis | 547, 549, 681 |
Bhattacharya R.N., Rao R.R. — Normal Approximation and Asymptotic Expansions | 41 |
Bingham N.H., Goldie C.M., Teugels J.L. — Regular variation | 241, 263, 277 |
Young R.M. — An Introduction to Nonharmonic Fourier Series | 200 |
Bogolubov N.N., Logunov A.A., Todorov I.T. — Introduction to Axiomatic Quantum Field Theory | 523 |
Billingsley P. — Probability and Measure | 354 |
Reed M., Simon B. — Methods of Modern mathematical physics (vol. 2) Fourier analysis, self-adjointness | 10 |
Pinsky M.A. — Introduction to Fourier Analysis and Wavelets | 18, 94 |
Murty M.R. — Problems in analytic number theory | 42, 44 |
Wheeden R.L., Zygmund A. — Measure and integral. An introduction to real analysis | 144, 220 |
Exner P. — Open quantum systems and Feynman integrals | 25 |
Patterson S.J. — An Introduction to the Theory of the Riemann Zeta-Function | 111 |
Estrada R., Kanwal R.P. — A distributional approach to asymptotics theory and applications | 181 |
Conway J.B. — A Course in Functional Analysis | 22,345 |
Lang S. — Real and Functional Analysis (Graduate Texts in Mathematics Series #142) | 176, 287, 291 |
Korevaar J. — Tauberian Theory: A Century of Developments | 79, 80, 121, 126, 131, 137, 145, 150, 152, 237 |
Larsen R. — Banach algebras: An Introduction | 114 |
Drmota M., Tichy R.F. — Sequences, Discrepancies and Applications | 18, 371 |
Durrett R. — Probability: Theory and Examples | 462 |
Korner T.W. — Exercises in Fourier Analysis | 10, 200—201, 220 |
Grenander U. — Toeplitz Forms and Their Applications | 190 |
Williamson J.H. — Lebesgue Integration | 73 |
Browder A. — Mathematical Analysis: An Introduction | 168 |
Kythe P.K., Puri P. — Partial differential equations and Mathematica | 107 |
Papoulis A. — The Fourier Integral and Its Applications | 278 |
Dym H., McKean H.P. — Fourier Series and Integrals | 39, 40, 96, 102, 105, 199 |
Lukacs E. — Characterisic functions | 26 |
Churchill R.V. — Operational mathematics | 174 |
Bornemann F. — Homogenization in Time of Singularly Perturbed Mechanical Systems (Lecture Notes in Mathematics, 1687) | 6, 29, 43 |
Lang S. — Undergraduate analysis | 318 |
Lighthill M. J. — Introduction to Fourier analysis and generalized functions | 46—51 |
Bhatia R. — Fourier Series (Mathematical Association of America Textbooks) | 36, 88 |
Stakgold I. — Green's functions and boundary value problems | 108, 122, 129, 133 |
Donoghue W.F. — Distributions and Fourier transforms | 146 |
Hewitt E., Stromberg K. — Real and abstract analysis: a modern treatment of the theory of functions of a real variable | 249, 401 |
Bachman G. — Elements of Abstract Harmonic Analysis | 4 |
Krall A.M. — Hilbert Space, Boundary Value Problems, and Orthogonal Polynomials | 14 |
Cohen G.L. — A Course in Modern Analysis and Its Applications | 303 |
Pier J.-P. — Mathematical Analysis during the 20th Century | 130 |
Murty R., Murty K. — Non-vanishing of L-Functions and Applications (Progress in Mathematics) | 12, 13 |
De Barra G — Measure theory and integration | 75, 235 |
Dym H., McKean H. — Fourier Series and Integrals (Probability & Mathematical Statistics Monograph) | 39, 40, 96, 102, 105, 199 |
Zorich V.A., Cooke R. — Mathematical analysis II | 532, 638 |
Zorich V. — Mathematical Analysis | 532, 638 |
Fuchssteiner B., Lusky W. — Convex Cones (North-Holland Mathematics Studies) | 374 |
Stakgold I. — Boundary value problems of mathematical physics | 126, 185 |
Exner P. — Open quantum systems and Feynman integrals | 25 |
Gripenberg G., Londen S.O., Staffans O. — Volterra integral and functional equations | 41, 52[2.5.4] |
Vretblad A. — Fourier Analysis and Its Applications (Graduate Texts in Mathematics) | 25 |