Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
Ìåõìàòÿíàì
square Ïåðâûé êóðñ

square Âòîðîé êóðñ

square Òðåòèé êóðñ

square ×åòâåðòûé êóðñ

square Ïÿòûé êóðñ
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
Êðàñîòà
blank
blank
Ðåçóëüòàò ïîèñêà

Ïîèñê êíèã, ñîäåðæàùèõ: Riemann — Lebesgue lemma



ÊíèãàÑòðàíèöû äëÿ ïîèñêà
Kadison R.V., Ringrose J.R. — Fundamentals of the theory of operator algebras (vol. 1) Elementary Theory197
Taylor M.E. — Partial Differential Equations. Basic theory (vol. 1)184, 202
Taylor M.E. — Partial Differential Equations. Qualitative studies of linear equations (vol. 2)168
Hunter J.K., Nachtergaele B. — Applied Analysis308
Reed M., Simon B. — Methods of Modern mathematical physics (vol. 1) Functional analysis327
Bruce C.Berndt — Ramanujan's Notebooks (part 4)288, 302, 316
Apostol T.M. — Introduction to Analytic Number Theory279
Allen R.L., Mills D.W. — Signal analysis. Time, frequency, scale and structure258, 413
Apostol T.M. — Mathematical Analysis313
Blei R. — Analysis in Integer and Fractional Dimensions145
Bender C., Orszag S. — Advanced Mathematical Methods for Scientists and Engineers277—278, 285, 311p
Henrici P. — Applied and Computational Complex Analysis (Vol. 2)263, 265, 266, 268, 269, 277, 288, 350
Rudin W. — Real and Complex Analysis103
Axler S., Bourdon p., Ramey W. — Harmonic function theory183
Jones D.S. — Introduction to Asymptotics: A Treatment Using Nonstandard Analysis32
Graham R.L., Grotschel M., Lovasz L. — Handbook of combinatorics (vol. 2)1171
Hewitt E., Ross K.A. — Abstract Harmonic Analysis (Vol. 2)81
Katznelson Y. — Introduction to Harmonic Analysis13, 123
Miklowitz J. — The theory of elastic waves and waveguides243
Folland J.B. — Real Analysis: Modern Techniques and Their Applications249
Pugovecki E. — Quantum mechanics in hilbert space216
Bateman P.T., Diamond H.G. — Analytic Number Theory: An Introductory Course144
Davies E. — Spectral Theory and Differential Operators49
Debnath L., Mikusinski P. — Introduction to Hilbert Spaces with Applications195
Engel K.-J., Nagel R. — One-Parameter Semigroups for Linear Evolution Equations406, 526
Katznelson Y. — Introduction to Harmonic Analysis136
Kythe P.K., Schaferkotter M.R. — Partial Differential Equations and Mathematica107
Kurtz D.S., Swartz C.W. — Theories of Integration131
Borwein P, Erdelyi T — Polynomials and polynomial inequalities54
Borwein P., Choi S., Rooney B. — The Riemann Hypothesis467
Debnath L. — Linear Partial Differential Equations for Scientists and Engineers201
Prugovecki E. — Quantum Mechanics in Hilbert Space216
Young R.M. — An Introduction to Non-Harmonic Fourier Series, Revised Edition200
Ablowitz M.J., Fokas A.S. — Complex Variables: Introduction and Applications439
Szkelyhidi L. — Discrete Spectral Synthesis and Its Applications9
Reed M., Simon B. — Methods of Modern mathematical physics (vol. 3) Scattering theory10
Krantz S.K. — Partial Differential Equations and Complex Analysis27
Thaller B. — Visual quantum mechanics28
Kline M. — Mathematical Thought from Ancient to Modern Times, Vol. 1104647
Engel K.-J., Nagel R. — Short Course on Operator Semigroups230
Reed M., Simon B. — Methods of Functional Analysis (in 4 volumes). Volume 1: Functional Analysis327
Spivak M. — Calculus303, 366
Reed M., Simon B. — Methods of Modern mathematical physics (vol. 4) Analysis of operators$10^2$
Rudin W. — Functional analysis378
Lang S.A. — Undergraduate Analysis318
Lang S. — Real Analysis308
Brown L.S. — Quantum Field Theory292
Ablowitz M.J., Segur H. — Solitons and the Inverse Scattering Transform358, 368
Rudin W. — Real and complex analysis103
Zauderer E. — Partial Differential Equations of Applied Mathematics248, 297, 308
Staffans O. — Well-Posed Linear Systems349
Bachman G., Beckenstein E. — Fourier And Wavelet Analysis104
Stakgold I. — Green's Functions and Boundary Value Problems108, 122, 129, 133
Patterson S.J. — An introduction to the theory of the Riemann zeta-function111
Kline M. — Mathematical Thought from Ancient to Modern Times, Vol. 21046—1047
Weir A.J. — Lebesgue Integration and Measure115, 204
Kammler D.W. — First Course in Fourier Analysis81, 458
Strichartz R.S. — The way of analysis547, 549, 681
Bhattacharya R.N., Rao R.R. — Normal Approximation and Asymptotic Expansions41
Bingham N.H., Goldie C.M., Teugels J.L. — Regular variation241, 263, 277
Young R.M. — An Introduction to Nonharmonic Fourier Series200
Bogolubov N.N., Logunov A.A., Todorov I.T. — Introduction to Axiomatic Quantum Field Theory523
Billingsley P. — Probability and Measure354
Reed M., Simon B. — Methods of Modern mathematical physics (vol. 2) Fourier analysis, self-adjointness10
Pinsky M.A. — Introduction to Fourier Analysis and Wavelets18, 94
Murty M.R. — Problems in analytic number theory42, 44
Wheeden R.L., Zygmund A. — Measure and integral. An introduction to real analysis144, 220
Exner P. — Open quantum systems and Feynman integrals25
Patterson S.J. — An Introduction to the Theory of the Riemann Zeta-Function111
Estrada R., Kanwal R.P. — A distributional approach to asymptotics theory and applications181
Conway J.B. — A Course in Functional Analysis22,345
Lang S. — Real and Functional Analysis (Graduate Texts in Mathematics Series #142)176, 287, 291
Korevaar J. — Tauberian Theory: A Century of Developments79, 80, 121, 126, 131, 137, 145, 150, 152, 237
Larsen R. — Banach algebras: An Introduction114
Drmota M., Tichy R.F. — Sequences, Discrepancies and Applications18, 371
Durrett R. — Probability: Theory and Examples462
Korner T.W. — Exercises in Fourier Analysis10, 200—201, 220
Grenander U. — Toeplitz Forms and Their Applications190
Williamson J.H. — Lebesgue Integration73
Browder A. — Mathematical Analysis: An Introduction168
Kythe P.K., Puri P. — Partial differential equations and Mathematica107
Papoulis A. — The Fourier Integral and Its Applications278
Dym H., McKean H.P. — Fourier Series and Integrals39, 40, 96, 102, 105, 199
Lukacs E. — Characterisic functions26
Churchill R.V. — Operational mathematics174
Bornemann F. — Homogenization in Time of Singularly Perturbed Mechanical Systems (Lecture Notes in Mathematics, 1687)6, 29, 43
Lang S. — Undergraduate analysis318
Lighthill M. J. — Introduction to Fourier analysis and generalized functions46—51
Bhatia R. — Fourier Series (Mathematical Association of America Textbooks)36, 88
Stakgold I. — Green's functions and boundary value problems108, 122, 129, 133
Donoghue W.F. — Distributions and Fourier transforms146
Hewitt E., Stromberg K. — Real and abstract analysis: a modern treatment of the theory of functions of a real variable249, 401
Bachman G. — Elements of Abstract Harmonic Analysis4
Krall A.M. — Hilbert Space, Boundary Value Problems, and Orthogonal Polynomials14
Cohen G.L. — A Course in Modern Analysis and Its Applications303
Pier J.-P. — Mathematical Analysis during the 20th Century130
Murty R., Murty K. — Non-vanishing of L-Functions and Applications (Progress in Mathematics)12, 13
De Barra G — Measure theory and integration75, 235
Dym H., McKean H. — Fourier Series and Integrals (Probability & Mathematical Statistics Monograph)39, 40, 96, 102, 105, 199
Zorich V.A., Cooke R. — Mathematical analysis II532, 638
Zorich V. — Mathematical Analysis532, 638
Fuchssteiner B., Lusky W. — Convex Cones (North-Holland Mathematics Studies)374
Stakgold I. — Boundary value problems of mathematical physics126, 185
Exner P. — Open quantum systems and Feynman integrals25
Gripenberg G., Londen S.O., Staffans O. — Volterra integral and functional equations41, 52[2.5.4]
Vretblad A. — Fourier Analysis and Its Applications (Graduate Texts in Mathematics)25
blank
HR
@Mail.ru
© Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2025
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01!| Valid CSS! Î ïðîåêòå