| Êíèãà | Ñòðàíèöû äëÿ ïîèñêà |
| Weintraub S. — Differential Forms. A complement to vector calculus | |
| Hutchins M., Schlager N. — Grzimek's animal life encyclopedia (Vol. 17. Cumulative index) | 2:7, 12:27—28 |
| Bass H. — Algebraic K-theory | 29 |
| Khosrowpour M. — Encyclopedia Of Information Science And Technology | 3073 |
| Graham R.L., Grotschel M., Lovasz L. — Handbook of combinatorics (vol. 1) | 668, 1846 |
| Twyman R.M. — Advanced Molecular Biology: A Concise Reference | 297 |
| Ito K. — Encyclopedic Dictionary of Mathematics. Vol. 2 | 200.H |
| Lang S. — Algebra | 445, 767 |
| Berger M. — A Panoramic View of Riemannian Geometry | 177 |
| Yale P.B. — Geometry and Symmetry | 228 |
| MacLane S. — Categories for the working mathematician | 175, 198 |
| Matsumura H. — Commutative ring theory | 127, 170, 274 |
| Schenck H. — Computational algebraic geometry | 27 |
| Donaldson K., Kronheimer P.B. — Geometry of Four-Manifolds | 1 |
| Coxeter H.S.M. — Non-Euclidean Geometry | see Harmonic |
| Miller E., Sturmfels B. — Combinatorial Commutative Algebra | See (co)homology |
| Eisenbud D. — Commutative algebra with a view toward algebraic geometry | 45, 611 |
| Hicks N. — Notes on differential geometry | 98 |
| Rudin W. — Real and Complex Analysis | 260 |
| Gelfand S.I., Manin Yu.I. — Methods of Homological Algebra | 47 |
| Graham R.L., Grotschel M., Lovasz L. — Handbook of combinatorics (vol. 2) | 668, 1846 |
| Lefschetz S. — Algebraic topology | 98 |
| Cuntz J., Skandalis G., Tsygan B. — Cyclic Homology in Non-Commutative Geometry | 7 |
| Raychaudhury S. — Computational text analysis for functional genomics and bioinformatics | 40—2, 117 |
| Behnke H., Bachmann F., Fladt K. — Fundamentals of Mathematics, Volume II: Geometry | 98, 619, 632, 652 |
| Knapp A.W. — Elliptic Curves (MN-40) | 317, 321, 392 |
| Grillet P.A. — Abstract Algebra | 463—471 |
| Kaczynski T., Mischaikow K.M. — Computational Homology | 138 |
| Eisenbud D. — Computations in Algebraic Geometry with Macaulay 2 | 151 |
| Hughes D.R., Piper F.C. — Projective Planes | 95, 259 |
| Cartier P., Julia B., Moussa P. — Frontiers in Number Theory, Physics, and Geometry II | 542 |
| Hatcher A. — Algebraic Topology | 106 |
| Weyl H. — The Classical Groups: Their Invariants and Representations, Vol. 1 | 277 |
| Shafarevich I.R., Danilov V.I., Iskovskih V.A. — Algebraic Geometry II : Cohomology of Algebraic Varieties. Algebraic Surfaces (Encyclopaedia of Mathematical Sciences) | 7 |
| Bergh J., Teillaud M. (Ed) — Effective Computational Geometry for Curves and Surfaces | 282 |
| Jezierski J., Marzantowicz W. — Homotopy Methods in Topological Fixed and Periodic Points Theory | 42 |
| Corfield D. — Towards a Philosophy of Real Mathematics | 158 |
| Yandell B. — The Honors Class: Hilbert's Problems and Their Solvers | 123, 322, 329, 345—346 |
| Hirschfield J.W. — Projective Geometries over Finite Fields | 152 |
| Shankar R. — Basic Training In Mathematics | 191 |
| Kline M. — Mathematical Thought from Ancient to Modern Times, Vol. 1 | 1180—1081 |
| Bamberg P.G. — A Course in Mathematics for Students of Physics, Vol. 2 | 505 |
| Steenrod N.E. — First Concepts of Topology | 135 |
| Kline M. — Mathematical Thought from Ancient to Modern Times, Vol. 3 | 1180—1181 |
| Coxeter H.S.M. — Introduction to Geometry | 247, 251 |
| Ito K. — Encyclopedic Dictionary of Mathematics | 200.H |
| Collins G.W. — Fundamentals of Stellar Astrophysics | 40 |
| Carter J.S. — How Surfaces Intersect in Space: A Friendly Introduction to Topology | 250 |
| Mukhi S., Mukunda N. — Introduction to Topology, Differential Geometry and Group Theory for Physicists | 56 |
| Kline M. — Mathematical Thought from Ancient to Modern Times, Vol. 2 | 1180—1181 |
| Choquet-Bruhat Y., Dewitt-Morette C. — Analysis, Manifolds and Physics (vol. 2) | 321 |
| Malle G., Matzat B.H. — Inverse Galois Theory | 97 |
| Lewis J.D. — CRM Monograph Series, vol.10: A Survey of the Hodge Conjecture | see also “cohomology” |
| Beckenbach E.F. (editor), Polya G., Lehmer D.H. and others — Applied combinatorial mathematics | 433—441 |
| Attwood T.K., Parry-Smith D.J. — Introduction to bioinformatics | 12, 15, 47, 64, 108, 142, 146, 204 |
| Rourke C.P., Sanderson B.J. — Introduction to Piecewise-Linear Topology | 97 |
| O'Donnell C.J. — Incidence Algebras | 18 |
| Janich K. — Topology | 72, 73,92, 103 |
| Fersht A. — Structure and Mechanism in Protein Science | 8, 9 |
| Bertlmann R.A. — Anomalies in Quantum Field Theory | 58—67 |
| Zeidler E. — Nonlinear Functional Analysis and Its Applications: Part 1: Fixed-Point Theorems | 728; see Part V |
| Lang S. — Introduction to Algebraic and Abelian Functions | 53, 71, 127 |
| Ohtsuki T. — Quantum invariants: a study of knot, 3-manifolds, and their sets | 3 |
| Beth T., Jungnickel D., Lenz H. — Design Theory (vol. 2) | 188 |
| Lang S. — Algebra | 445, 767 |
| Coxeter H.S.M. — The Real Projective Plane | 52, 54, 57, 00, 57, 84—85, 170 |
| Struik D.J. — Lectures on Analytic and Projective Geometry | 87, 88, 231 |
| Lefschetz S. — Introduction to topology | 91 |
| Kinsey L.C. — Topology of surfaces | 129 |
| Choquet-Bruhat Y., DeWitt-Morette C., Dillard-Bleick M. — Analysis, manifolds and physics. Part I. | 222 |
| Archbold J.W. — Introduction to the Algebraic Geometry of a Plane | 201 |
| Marathe K.B., Martucci G. — The mathematical foundations of gauge theories | 89, 310 |
| Bass H. — Algebraic K-theory | 29 |
| Lefschetz S. — Introduction to Topology | 91 |
| Fink K. — A brief history of mathematics | 249 |
| Verdina J. — Projective Geometry and Point Tranformations | 60 |
| Vasil'ev V. A., Sossinski A. — Introduction to Topology | 81 |
| Carroll R.W. — Mathematical physics | 252, 253 |
| Katz V.J. — A History of Mathematics: An Introduction | 806, 820—822, 832—833 |
| Dicks W., Dunwoody M.J. — Groups acting on graphs | 141 |
| Beckenbach E.F. (ed.) — Applied Combinatorial Mathematics | 433—441 |
| Lane S.M. — Mathematics, form and function | 331 |
| Zeidler E. — Oxford User's Guide to Mathematics | 540 |
| Hodge W.V.D., Pedoe D. — Methods of Algebraic Geometry: Volume 1 | 356 |
| Polchinski J. — String theory (volume 2). Superstring theory and beyond | 306, 317 |
| Biliotti M., Jha V., Johnson N. — Foundations of translation planes | 521 |
| Knarr N. — Translation Planes: Foundations and Construction Principles | 5 |
| Milnor J.W., Stasheff J.D. — Characteristic Classes. (Am-76), Vol. 76 | 257—263 |
| Carr G.S. — Formulas and Theorems in Pure Mathematics | 975, G.3, 8, N.44, E.24 |
| Maclane S. — Homology | 35 |
| Zorich V.A., Cooke R. — Mathematical analysis II | 358 |
| Zorich V. — Mathematical Analysis | 358 |
| Fritsch R., Piccinini R. — Cellular Structures in Topology (Cambridge Studies in Advanced Mathematics 19) | 284 |
| Choquet-Bruhat Y., Dewitt-Morette C. — Analysis, manifolds and physics | 222 |
| Azcarraga J., Izquierdo J. — Lie groups, Lie algebras, cohomology and some applications in physics | 46, 80 |
| Mac Lane S. — Mathematics: Form and Function | 331 |
| Beth T., Jungnickel D., Lenz H. — Design Theory (Vol. 1) | 188 |
| Shafarevich I.R. (ed.) — Algebraic Geometry II: Cohomology of Algebraic Varieties. Algebraic Surfaces (Encyclopaedia of Mathematical Sciences. Volume 35) | 7 |
| Mezey P.G. — Shape In Chemistry: An Introduction To Molecular Shape And Topology | 64 |
| Kline M. — Mathematical thought from ancient to modern times | 1180—1181 |