| Êíèãà | Ñòðàíèöû äëÿ ïîèñêà |
| Hunter J.K., Nachtergaele B. — Applied Analysis | 117 |
| Dummit D.S., Foote R.M. — Abstract algebra | 432 |
| Lang S. — Algebra | 142, 287 |
| Yale P.B. — Geometry and Symmetry | 253 |
| Bruns W., Vetter U. — Determinantal Rings | 2 |
| Lipschutz Seymour — Schaum's Outline of Theory and Problems of Linear Algebra (Schaum's Outlines) | 398 |
| Olver P.J. — Equivalence, Invariants and Symmetry | 253 |
| Hoffman K., Kunze R. — Linear algebra | 99, 165 |
| Baker A. — Matrix Groups: An Introduction to Lie Group Theory | 290 |
| Lee J.M. — Riemannian Manifolds: an Introduction to Curvature | 13 |
| Agrachev A.A., Sachkov Yu.L. — Control theory from the geometric viewpoint | 141 |
| Lee J.M. — Introduction to Smooth Manifolds | 66 |
| Millman R.S., Parker G.D. — Elements of Differential Geometry | 100 |
| Borevich Z.I., Shafarevich I.R. — Number Theory | 403 |
| Naber G.L. — The geometry of Minkowski spacetime: an introduction to the mathematics of the special theory of relativity | 147 |
| Dummit D.S., Foote R.M. — Abstract Algebra | 357 |
| Sepanski R.M. — Compact Lie Groups | 35, 47 |
| Ash R.B. — Abstract algebra: the basic graduate year | 7.4 |
| Kunz E. — Introduction to Plane Algebraic Curves | 245 |
| Valls C., Barreira L. — Stability of Nonautonomous Differential Equations | 221, 236, 251, 256 |
| Connell E.H. — Elements of abstract and linear algebra | 132 |
| Ivey Th.A., Landsberg J.M. — Cartan for Beginners: Differential Geometry Via Moving Frames and Exterior Differential Systems | 311 |
| Boffi G., Buchsbaum D. — Threading Homology through Algebra: Selected Patterns | 28 |
| Boothby W.M. — An introduction to differentiable manifolds and riemannian geometry | 177 |
| O'Donnel P. — Introduction to 2-Spinors in General Relativity | 17, 132 |
| Roggenkamp K.W., Huber-Dyson V. — Lattices Over Orders I | III 17 |
| Akivis M., Goldberg V. — Differential Geometry of Varieties with Degenerate Gauss Maps | 6 |
| Cohn P.M. — Algebraic numbers and algebraic functions | 73 |
| Reed M., Simon B. — Methods of Modern mathematical physics (vol. 4) Analysis of operators | 305 |
| Lebedev L.P., Cloud M.J. — Tensor Analysis | 11 |
| Gruenberg K.W. — Linear Geometry | 80 |
| Lin I.H. — Geometric Linear Algebra. Vol. 1 | 420, 750 |
| Halmos P.R. — Finite-Dimensional Vector Spaces | 23 |
| Stewart J. — Advanced general relativity | 8 |
| Blyth T.S., Robertson E.F. — Further Linear Algebra | 92 |
| Thirring W.E. — Classical Mathematical Physics: Dynamical Systems and Field Theories | 46 |
| Thirring W.E. — Course in Mathematical Physics: Classical Dynamical System, Vol. 1 by Walter E. Thirring | 43 |
| Tung W.K. — Group Theory in Physics: An Introduction to Symmetry Principles, Group Representations, and Special Functions | 301 |
| Bamberg P.G., Sternberg Sh. — A Course in Mathematics for Students of Physics: Volume 1 | 350—352 |
| Kühnel W., Hunt B. — Differential Geometry: Curves - Surfaces - Manifolds | 217 |
| Munkres J.R. — Analysis on manifolds | 222 |
| Goswami J.C., Chan A.K. — Fundamentals of Wavelets : Theory, Algorithms, and Applications | 11 |
| Marcus M. — Finite dimensional multilinear algebra. Part I | 7 |
| Betten J. — Creep Mechanics | 19 |
| Tamura I. — Topology of lie groups, I and II | 137 |
| Fuhrmann P.A. — A Polynomial Approach to Linear Algebra | 79 |
| Olver P.J., Shakiban C. — Applied linear. algebra | 340 |
| Bamberg P.G., Sternberg S. — A Course in Mathematics for Students of Physics, Vol. 1 | 350-2 |
| Straumann N. — General relativity and relativistic astrophysics | 17 |
| Mac Lane S., Birkhoff G.D. — Algebra | 208, 233, 357 |
| Behrens E.-A. — Ring Theory: Volume 44 in Pure and Applied Mathematics | 187 |
| Boothby W.M. — An Introduction to Differentiable Manifolds and Riemannian Geometry | 177 |
| Hungerford T.W. — Algebra | 204 |
| Curtis M.L. — Abstract Linear Algebra | 42 |
| M.A.Akivis, V.V.Goldberg — Projective Differential Geometry of Submanifolds | 5 |
| Moh T.T. — Algebra | 184 |
| Baez J.C., Muniain J.P. — Gauge theories, knots, and gravity | 54, 209 |
| Thuillard M. — Wavelets in Soft Computing | 21 |
| Browder A. — Mathematical Analysis: An Introduction | 270, 282 |
| Milnor J., Husemoller D. — Symmetric Bilinear Forms | 4 |
| Cox D.A., Little J., O'Shea D. — Using Algebraic Geometry | 43 |
| Goffman C. — Calculus of several variables | 9 |
| Rice J.R. — The approximation of functions. Nonlinear and multivariate theory | 158 |
| Cohn P.M. — Algebraic Numbers and Algebraic Functions | 73 |
| Kreyszig E. — Introductory functional analysis with applications | 114 |
| Duistermaat J.J, Kolk J.A.C. — Distributions: theory and applications | 74, 173 |
| Lombardi E. — Oscillatory Integrals and Phenomena Beyond all Algebraic Orders: with Applications to Homoclinic Orbits in Reversible Systems | 151—152 |
| Birkhoff G., Mac Lane S. — A Survey of Modern Algebra | 210 |
| Goswami J., Chan A. — Fundamentals of Wavelets. Theory, Algorithms, and Applications | 11 |
| Everest G., van der Poorten A., Shparlinski I. — Recurrence sequences | 157 |
| Niederreiter H. — Random number generation and quasi-Monte Carlo methods | 218 |
| Moh T.T. — Algebra | 184 |
| Hsiung C.-C. — A first course in differential geometry | 40, 65 |
| Loomis L.H., Sternberg S. — Advanced calculus | 82 |
| Tuynman G.M. — Supermanifolds and Supergroups: Basic Theory | 67 |
| Lane S.M. — Mathematics, form and function | 194 |
| Hirsch M.W., Smale S. — Differential Equations, Dynamical Systems, and Linear Algebra | 205 |
| Ivey T.A., Landsberg J.M. — Cartan for beginners: differential geometry via moving frames exterior differential systems | 311 |
| Frankel T. — The geometry of physics: an introduction | 39 |
| Gruenberg K.W., Weir A.J. — Linear Geometry | 80 |
| Lang S. — Linear Algebra | 161 |
| Hazewinkel M. — Handbook of Algebra (÷àñòü 1) | 326 |
| Streater R.F. — Statistical Dynamics: A Stochastic Approach to Nonequilibrium Thermodynamics | 55 |
| Dieudonne J. — Linear Algebra and Geometry. | 4.1.15 |
| Herstein I.N. — Topics in algebra | 187 |
| Mcdonald B.R. — Linear algebra over commutative rings | 161 |
| Von Grudzinski O. — Quasihomogeneous distributions | 14, 30 |
| Magurn B.A. — An algebraic introduction to k-theory | 68 |
| Chandrasekhar S. — The Mathematical Theory of Black Holes | 6 |
| Frankel T. — The geometry of physics: An introduction | 39 |
| Maclane S. — Homology | 147 |
| Klingenberg W. — A Course in Differential Geometry (Graduate Texts in Mathematics) | 111 |
| Sagle A. A. — Introduction to Lie groups and Lie algebras | 66, 246 |
| Golan J.S. — The Linear Algebra a Beginning Graduate Student Ought to Know (Texts in the Mathematical Sciences) | 290 |
| Thirring W., Harrell E.M. — Classical mathematical physics. Dynamical systems and field theory | 46 |
| Nash C., Sen S. — Topology and geometry for physicists | 40 |
| Proskuryakov I.V. — Problems in Linear Algebra | 297, 298 |