| Êíèãà | Ñòðàíèöû äëÿ ïîèñêà |
| Bartle R.G. — The Elements of Real Analysis | 73 |
| Nevanlinna R., Paatero V. — Introduction to Complex Analysis | 9 |
| Ito K. — Encyclopedic Dictionary of Mathematics. Vol. 2 | 87.C 425.O |
| Apostol T.M. — Mathematical Analysis | 52, 62 |
| Isham J. — Modern Differential Geometry for Physics | 47 |
| Lee J.M. — Introduction to Topological Manifolds | 26, 348 |
| Ahlfors L.V. — Complex analysis | 53 |
| Folland J.B. — Real Analysis: Modern Techniques and Their Applications | 114 |
| Pugovecki E. — Quantum mechanics in hilbert space | 27 |
| Mendelson B. — Introduction to Topology | 179 |
| Mill J.V. — The Infinite-Dimensional Topology of Function Spaces | 462 |
| Reich S., Shoikhet D. — Nonlinear Semigroups, Fixed Points, and Geometry of Domains in Banach Spaces | 3 |
| Borwein P., Choi S., Rooney B. — The Riemann Hypothesis | see “Condensation point” |
| Sagan H. — Advanced Calculus of Real-Valued Functions of a Real Variable and Vector-Valued Functions of a Vector Variable | 80, 211 |
| Prugovecki E. — Quantum Mechanics in Hilbert Space | 27 |
| James I.M. — Topological and Uniform Spaces | 133—139, 151 |
| Hrbacek K., Jech T. — Introduction to Set Theory | 184 |
| Nagashima H., Baba Y. — Introduction to chaos: physics and mathematics of chaotic phenomena | 120 |
| Morris S.A. — Topology without tears | 45 |
| Geroch R. — Mathematical physics | 163 |
| Royden H.L. — Real Analysis | 43 (27) |
| Lang S.A. — Undergraduate Analysis | 35, 36, 132, 157 |
| Royden H.L. — Real Analysis | 43 (27) |
| Szekeres P. — A Course in Modern Mathematical Physics: Groups, Hilbert Space and Differential Geometry | 260 |
| Ito K. — Encyclopedic Dictionary of Mathematics | 87.C, 425.O |
| Schroeder M.R. — Schroeder, Self Similarity: Chaos, Fractals, Power Laws | 281 |
| Carmo M.P. — Differential geometry of curves and surfaces | 457 |
| Strichartz R.S. — The way of analysis | 79 |
| Serra J. — Image Analysis and Mathematical Morphology | 68 |
| Köthe G. — Topological vector spaces I | 4 |
| Burkhardt H. — Theory of Functions of a Complex Variable | 128 |
| Berger M., Cole M. (translator) — Geometry I (Universitext) | 9.11.4 |
| Hu S.-T. — Elements of real analysis | 114 |
| Janich K. — Topology | 3, see “Cluster point” |
| Hu S.-T. — Elements of general topology | 24 |
| Tamura I. — Topology of lie groups, I and II | 3, 8 |
| Pears A.R. — Dimension theory of general spaces | 4 |
| Rektorys K. — Survey of applicable mathematics | 378, 994 |
| Grosche C. — Path integrals, hyperbolic spaces, and Selberg trace formulae | 24, 137 |
| Kreyszig E. — Introductory functional analysis with applications | 21 |
| Hu S.T. — Introduction to general topology | 24, 137 |
| Hu S.-T. — Introduction to contemporary mathematics | 174 |
| Aliprantis C. — Principles of real analysis | 37, 59 |
| Przeworska-Rolewicz D., Rolewicz S. — Equations in linear spaces | 116 |
| Semadini Z. — Banach Spaces of Continuous Functions. Vol. 1 | 44, 110, 149 |
| Choquet-Bruhat Y., DeWitt-Morette C., Dillard-Bleick M. — Analysis, manifolds and physics. Part I. | 13 |
| Aleksandrov P.S. — Combinatorial topology. Volume 1 | 5, 8 |
| McShane E.J., Botts T.A. — Real Analysis | 51 |
| Kuratowski K. — Introduction To Set Theory & Topology | 119 |
| Lang S. — Undergraduate analysis | 35, 36, 132, 157, 193 |
| Cohen L.W., Ehrlich G. — The Structure of the Real Number System | 94 |
| Shick P.L. — Topology: Point-set and geometric | 78 |
| Rektorys K. (ed.) — Survey of Applicable Mathematics | 378, 994 |
| Hsiung C.-C. — A first course in differential geometry | 5 |
| Frankel T. — The geometry of physics: an introduction | 106 |
| Ponstein J. — Nonstandart Analysis | 111 |
| Wald R.M. — General Relativity | 426 |
| Zeidler E. — Oxford User's Guide to Mathematics | 248, 257 |
| Schott J.R. — Matrix Analysis for Statistics | 70 |
| Pier J.-P. — Mathematical Analysis during the 20th Century | 31, 32, 41 |
| Collatz L. — Functional analysis and numerical mathematics | 19 |
| Rektorys K. — Survey of Applicable Mathematics.Volume 2. | I 340, II 319 |
| Treves F. — Topological Vector Spaces, Distributions And Kernels | 51 |
| Argyris J., Faust G., Haase M. — An Exploration of Chaos | 171, 657 |
| Geroch R. — Mathematical physics | 163 |
| James I.M. (ed.) — Topological and Uniform Spaces | 133—139, 151 |
| Magaril-Il'yaev G.G., Tikhomirov V.M. — Convex Analysis: Theory and Applications | 28 |
| Frankel T. — The geometry of physics: An introduction | 106 |
| Geroch R. — Mathematical physics | 163 |
| Cheney W. — Analysis for Applied Mathematics | 12 |
| Choquet-Bruhat Y., Dewitt-Morette C. — Analysis, manifolds and physics | 13 |
| Geroch R. — Mathematical physics | 163 |
| Apostol T. — Mathematical Analysis, Second Edition | 52, 62 |
| Isham C. — Modern Differential Geometry for Physicists | 47 |
| Dennery P., Krzywicki A. — Mathematics for Physicists | 4 |
| Srivastava H.M., Manocha H.L. — A Treatise on Generating Functions | 20 |
| Serra J. — Image Analysis and Mathematical Morphology | 68 |
| Hrbacek K., Jech T. — Introduction to Set Theory, Third Edition, Revised, and Expanded (Pure and Applied Mathematics (Marcel Dekker)) | 184 |