Книга | Страницы для поиска |
Kadison R.V., Ringrose J.R. — Fundamentals of the theory of operator algebras (vol. 1) Elementary Theory | 60, 223 |
Taylor M.E. — Partial Differential Equations. Basic theory (vol. 1) | 297, 489 |
Reed M., Simon B. — Methods of Modern mathematical physics (vol. 1) Functional analysis | 80 |
Seebach J.A., Steen L.A. — Counterexamples in Topology | 25, 37, 197 |
Goffman C., Nishiura T., Waterman D. — Homeomorphisms in Analysis | 187 |
Hewitt E., Ross K.A. — Abstract Harmonic Analysis (Vol. 1) | 42, 456 |
Hewitt E., Ross K.A. — Abstract Harmonic Analysis (Vol. 2) | 42 I, 456 I |
Lee J.M. — Introduction to Topological Manifolds | 85 |
Folland J.B. — Real Analysis: Modern Techniques and Their Applications | 161 |
Zimand M. — Computational Complexity: A Quantitative Perspective | 12, 13 |
Gierz G., Hofmann K.H., Keimel K. — Continuous Lattices and Domains | 112 I—3.40 |
Mill J.V. — The Infinite-Dimensional Topology of Function Spaces | 482 |
Dudley R.M., Fulton W. (Ed) — Real Analysis and Probability | 79, 277 |
Dacorogna B. — Direct Methods in the Calculus of Variations | 440, 443, 450 |
Gohberg I., Goldberg S. — Basic Operator Theory | 277 |
Krantz S.G. — Function Theory of Several Complex Variables | 108 |
Berberian S.K. — Fundamentals of Real Analysis | 304 |
Morris S.A. — Topology without tears | 123 |
Reed M., Simon B. — Methods of Functional Analysis (in 4 volumes). Volume 1: Functional Analysis | 80 |
Royden H.L. — Real Analysis | 139 |
Royden H.L. — Real Analysis | 139 |
Kadison R.V., Ringrose J.R. — Fundamentals of the Theory of Operator Algebras (vol. 2) Advanced Theory | 60, 323 |
Bogachev V.I. — Measure Theory Vol.2 | I: 89 |
Bayoumi A. — Foundations of Complex Analysis in Non Locally Convex Spaces: Function Theory without Convexity Condition | 20 |
Graham C.C., McGehee O.C. — Essays in Commutative Harmonic Analysis | 66, 85, 107 |
Hu S.-T. — Elements of real analysis | 188 |
Munkres J. — Topology | 296 |
Reed M., Simon B. — Methods of Modern mathematical physics (vol. 2) Fourier analysis, self-adjointness | 80 |
Monk J.D., Bonnet R. — Handbook Of Boolean Algebras Vol.3 | 1237 |
Krantz S.G. — Handbook of Real Variables | 149 |
Phillips N.Ch. — Equivariant K-Theory and Freeness of Group Actions on C*-Algebras | 8 |
Ash R.B., Doléans-Dade C.A. — Probability and Measure Theory | 158 |
Doran R.S., Wichmann J. — Approximate Identities and Factorization in Banach Modules | 56 |
Faith C. — Rings and Things and a Fine Array of Twentieth Century Associative Algebra | 16.6 |
Saxe K. — Beginning functional analysis | 148 |
Ralph P. Boas Jr, Alexanderson G.L., Mugler D.H. — Lion Hunting and Other Mathematical Pursuits | 97, 165—166 |
de Souza P.N., Silva J.-N. — Berkeley Problems in Mathematics | 291 |
Rota G.-C. — Studies in combinatorics (MAA Studies in Mathematics, volume 17) | 82 |
Grosche C. — Path integrals, hyperbolic spaces, and Selberg trace formulae | 151 |
Kreyszig E. — Introductory functional analysis with applications | 247 |
Hu S.T. — Introduction to general topology | 151 |
Bourgin R.D. — Geometric Aspects of Convex Sets with the Radon-Nikodym Property | 45, 60 |
Gleason A. — Fundamentals of Abstract Analysis | 263 |
Munkres J.R. — Topology: A First Course | 294 |
Rogers C.A. — Hausdorff Measures | 75—77 |
Krantz S.G. — Function theory of several complex variables | 108 |
Hewitt E., Stromberg K. — Real and abstract analysis: a modern treatment of the theory of functions of a real variable | 68, 79 |
Silverman J. — The arithmetic of dynamical systems | 268 |
Dunford N., Schwartz J., Bade W.G. — Linear operators. Part 2 | I.6.8 (20) |
Bichteler K. — Integration Theory | 11.5 |
Williams D. — Probability with Martingales | (A1.12) |
Dineen S. — Complex Analysis of Infinite Dimensional Spaces | 153, 374, 449 |
Morris S. — Pontryagin Duality and the Structure of Locally Compact Abelian Groups | 22 |
Dunford N., Schwartz J.T., Bade W.G. — Linear Operators, Part II: Spectral Theory. Self Adjoint Operators in Hilbert Space (Pure and Applied Mathematics: A Series of Texts and Monographs) | I.6.9 20 |
Morrison T.M. — Functional Analysis: An Introduction to Banach Space Theory | 76, 78, 124, 221 |
Truss J.K. — Foundations of Mathematical Analysis | 258, 332 |
Truss J. — Foundations of mathematical analysis | 258, 332 |
J. M. Borwein, Qi.Zhu — Techniques of Variational Analysis (CMS Books in Mathematics) | 33, 203 |
J. K. Truss — Foundations of mathematical analysis MCet | 258, 332 |
Souza P., Silva J., Souza P. — Berkeley Problems in Mathematics | 238 |