Авторизация
Поиск по указателям
Goffman C., Nishiura T., Waterman D. — Homeomorphisms in Analysis
Обсудите книгу на научном форуме
Нашли опечатку? Выделите ее мышкой и нажмите Ctrl+Enter
Название: Homeomorphisms in Analysis
Авторы: Goffman C., Nishiura T., Waterman D.
Аннотация: This book features the interplay of two main branches of mathematics: topology and real analysis. The material of the book is largely contained in the research publications of the authors and their students from the past 50 years. Parts of analysis are touched upon in a unique way, for example, Lebesgue measurability, Baire classes of functions, differentiability, $C^n$ and $C^{\infty}$ functions, the Blumberg theorem, bounded variation in the sense of Cesari, and various theorems on Fourier series and generalized bounded variation of a function.
Features:
Contains new results and complete proofs of some known results for the first time.
Demonstrates the wide applicability of certain basic notions and techniques in measure theory and set-theoretic topology.
Gives unified treatments of large bodies of research found in the literature.
Язык:
Рубрика: Математика /Анализ /Продвинутый анализ /
Статус предметного указателя: Готов указатель с номерами страниц
ed2k: ed2k stats
Год издания: 1998
Количество страниц: 216
Добавлена в каталог: 02.04.2005
Операции: Положить на полку |
Скопировать ссылку для форума | Скопировать ID
Предметный указатель
Absolute essential supremum of f (ab. ess. supf) 160 161
Absolute measure 20 159
Alexander’s horned sphere 80
Antoine’s necklace 80 84
Approximation 78
Approximation, -approximation in measure 78 79
Approximation, interpolation in measure 85 87
Area (nonparametric) 68 203 205
Area (nonparametric), area of f 69
Area (nonparametric), elementary area of g 68
Area (nonparametric), integral formula 68
Avdispahic 167 172
Avdispahic (theorem) 174
Baernstein 173
Baernstein — Waterman (theorem) 150
Baernstein, Waterman 152
Baire category theorem 187
Baire space 9 16 103 187
Banach 100 175
Banach Indicatrix Theorem 193
Bary 131
Berman, Brown, Cohn 49
Besicovitch 84 199
Bi-Lipschitzian 8 61 63 67 68 190
Bitopology 10
Blumberg 77
Blumberg (theorem) 9 99 104
Blumberg, property 9 104
Blumberg, set 106
Blumberg, set, simultaneous 106 108
Blumberg, set, strong 107
Blumberg, space 103 104
Bradford — Goffman (theorem) 9 99
Breckenridge, Nishiura 39
Brouwer 192
Bruckner (theorems) 8 38
Bruckner — Davies — Goffman (theorem) 17 20
Bruckner — Goffman (theorems) 21 29
Buczolich (theorem) 9 190
Category, almost continuous at x 100
Category, homogeneous second 99 102
Category, relative to E, first 99
Category, relative to E, heavy 100
Category, relative to E, second 99 100
Cell, projecting n-cell 81
Cell, topological n-cell 81 89 91 94
Cesari 38 39 70 176 177
Chanturiya (theorem) 174
Circle group $(T = \mathbb{R}/\pi\mathbb{Z}) 111
Completely metrizable space 187 188
Condition GW ((h)) 138—141 150
Condition UGW 149 150 152 153
Continuum Hypothesis 104 160
Convolution function 112
Convolution measure 127
Darboux property 41 56
Davenport (lemma) 124
Deformation 90—92 95 96
Deformation, capture 93
Deformation, precise partition 93
Denjoy property 43 47
density 189
Density topology 5 23 24 63 189 195 196
Density topology 8 9 104
Density-closure 8 195
Density-interior 8
Direction 90 93
Dirichlet kernel 112
Dirichlet — Jordan theorem 113 114 119 131
distribution 65
Distribution, n variables 70
Distribution, n variables, function 70
Distribution, n variables, measure 71
Distribution, n variables, measure representation of partial derivative 71
Distribution, n variables, partial derivative 71
Distribution, one variable, derivative 66 205
Distribution, one variable, function 66 205
Distribution, one variable, measure 66
Distribution, one variable, measure representation of derivative 66
Essential absolute continuity 67
Essential derivative 67
Essential length 65
Essential variation 65 67 194 195
Evans, Gariepy 206
Falconer 199
Federer 188
Fejer 117
Fejer — Lebesgue theorem 112 113 117
Fourier, , 136 154
Fourier, coefficients 111 172 174
Fourier, conjugate, function 121
Fourier, conjugate, series 120
Fourier, modified partial sum 116
Fourier, multiple 177
Fourier, partial sum 111
Fourier, series (S(f), S(x;f)) 111
Frechet 205
Frechet (theorem) 205
Frechet equivalence 38
Function, n variables, approximately continuous 189 195
Function, n variables, Borel measurable 188
Function, n variables, linearly absolutely continuous (= absolutely continuous) 70
Function, n variables, linearly continuous 70
Function, n variables, Lipschitzian 68 69
Function, one variable, -absolutely measurable 15 159
Function, one variable, -bounded variation ( -BV) 172 174
Function, one variable, absolutely continuous 62 64 193
Function, one variable, absolutely essentially bounded 20 160 161 163 180
Function, one variable, absolutely GW 164
Function, one variable, absolutely integrable 160 161 183
Function, one variable, absolutely measurable 159
Function, one variable, absolutely regulated 162—164 183
Function, one variable, approximate derivative 54
Function, one variable, approximately continuous 23 25 62 63
Function, one variable, approximately differentiate 78
Function, one variable, Borel measurable 188
Function, one variable, bounded deviation 178
Function, one variable, bounded variation 192
Function, one variable, generalized bounded variation 167
Function, one variable, indicatrix 131 174 194 195
Function, one variable, Lipschitzian 63
Function, one variable, quasi-continuous 104 106—108
Function, one variable, regulated 194
Function, one variable, simple 14
Function, one variable, variation 21
Functions, -absolutely equivalent 159
Functions, absolutely equivalent 159 162 178
Functions, classes of, 175
Functions, classes of, 175
Functions, classes of, -absolutely measurable $(ab\mathcal{F}) 15
Functions, classes of, Baire 188
Functions, classes of, Baire, class 0 188
Functions, classes of, Baire, class 1 188 198
Functions, classes of, Baire, class 2 188
Functions, classes of, Borel class 1 197 198
Functions, classes of, Borel measurable 188
Functions, classes of, bounded variation (BV) 192 194
Functions, classes of, bounded variation, Cesari (BVC) 70 71 176 206
Functions, classes of, continuous, bounded variation (CBV) 21 193
Functions, classes of, Darboux, Baire class 1 41—43 45 47
Functions, classes of, differentiate, infinitely 35
Functions, classes of, differentiate, n-times continuously 30
Functions, classes of, generalized bounded variation, 177
Functions, classes of, generalized bounded variation, 176 177
Functions, classes of, generalized bounded variation, 172—174
Functions, classes of, generalized bounded variation, -bounded variation (ABV) 167 171
Functions, classes of, generalized bounded variation, harmonic bounded variation (HBV) 168—171 173—175 177
Functions, classes of, generalized bounded variation, V[h] 173 178
Functions, classes of, GW 169
Functions, classes of, Lipschitz class 114
Functions, classes of, regulated (R(T)) 113 136 138 139 141 175
Functions, classes of, UGW 169
Functions, classes of, Zahorski 41 42
Functions, classes of, Zahorski 41 42
Functions, complementary 173 176
Garsia, Sawyer 175
Gleyzal 44
Gleyzal (theorem) 44 54
Goffman 70 78 80 88 168—170 173 176
Goffman (theorems) 71 79 83 84 86—88
Goffman — Liu (theorem) 71
Goffman — Neugebauer (theorem) 56
Goffman — Waterman (theorems) 138 177 196
Goffman, Neugebauer, Nishiura 195
Goffman, Pedrick 97
Goffman, Waterman 77 117 196 198
Goffman, Zink 77
Gorman, decomposition 5
Gorman, example 19
Gorman, sequence 5
Gorman, theorem 7 14 20
hadamard 178
Hardy 122
Haupt, Pauc 195
Hausdorff dimension, 199
Hausdorff measure 68 97 104
Hausdorff measure, 30
Hausdorff measure, 71
Hausdorff measure, 71 199
Hausdorff measure, 199
Hausdorff measure, -cover 198
Hausdorff measure, counting 199
Hausdorff measure, outer 199
Hausdorff naive packing, 30
Hausdorff naive packing, 200
Hausdorff naive packing, 37 38
Hausdorff naive packing, 200
Hausdorff naive packing, 30
Hausdorff naive packing, -packing 199
Hausdorff naive packing, 200
Hausdorff naive packing, rarefaction index 202
Hilbert transform (H[f]) 122
Homotopy 89 94 95 98
Integral formula, area 68 69
Integral formula, length 63 64
Integral mean value theorem 141
Interval function 44 47 54
Interval function (convergence of) 44
Interval function f([a, b]) = f(b) — f(a) 131 138
Jacobian (J(h, x)) 68
JORDAN 64
Jordan — Schoenflies (theorem) 80 81 84
Jurkat — Waterman (theorems) 121
Jurkat, Waterman 120 124
Kahane — Katznelson (theorem) 117
Kahane, Katznelson 117 124
Kahane, Zygmund 131
Laczkovich — Preiss (theorem) 31 37
Lebesgue ix 68 204
Lebesgue equivalence 3 21 65
Length (nonparametric) 63 203
Length (nonparametric), elementary length of g 63 203
Length (nonparametric), essential length of f (ess l(f, [0,1])) 63 203 length
Levy 103
Lower semicontinuous functional 64
Lower semicontinuous functional of n variables functions, area 69
Lower semicontinuous functional of n variables functions, elementary area 69 204
Lower semicontinuous functional of n variables functions, variation 69
Lower semicontinuous of one variable functions, elementary length 64 204
Lower semicontinuous of one variable functions, essential variation 194
Lower semicontinuous of one variable functions, length 64
Lower semicontinuous of one variable functions, total variation 64 193
Lukes, Maly, Zajicek 10
Lusin (theorem) 77 78 84 86 104
Map, approximately continuous 197
Map, bi-Lipschitzian 189 190
Map, dilation 190
Map, Lipschitzian 189 190 199
Map, Lipschitzian, constant of f (Lip(f)) 189
Maps, classes of, bimeasurable 85—87
Maps, classes of, bimeasurable , interpolation metric 85
Maps, classes of, self-homeomorphism (H[In]) 85—87
Maximoff (theorem) 41 56
Mean, (C,l) 112
Mean, Abel 113 121
Measurable boundary (upper, lower) 78
Measure, -admissible 95
Measure, equivalence 43
Measure, Lebesgue equivalence 89 98
Measure, Lebesgue — Stieltjes 91
Measure, Lebesgue-like 43 46 47 89 90 93 95
Measure, positive 43
Modulus of continuity 114
Modulus of continuity, integral 115
Neugebauer 43 57 104 106
Neugebauer (theorems) 45 46 108
Olevskii (theorem) 124 129
Oniani 121
Oscillation of f on E (osc(f; ?)) 162
Oskolkov 173
Oxtoby 15 20 97 160
Oxtoby, Ulam 97
Pal — Bohr theorem xii 111 117 120 121
Partition, boundary collection 94
Partition, mesh 94
Partition, n-cell 94
Partition, precise partition 95
Pierce — Waterman theorem 139
Point of almost continuity see “Category almost
Point of almost continuity, density 8 63 189 190 195
Point of almost continuity, dispersion 8 63 189 190
Point of almost continuity, varying monotonicity 27
Preiss 41 47 56
Preiss (theorem) 43
Prus — Wisniowski 176
Radon — Nykodym derivative 67
Rarefaction index 202
Rarefaction index, 36
Representation 38
Riemann localization principle 177
Riemann mapping theorem 117 122
Riesz, F. and M. 122
Rogers 198
Saakyan 117 121
Saks — Sierpiriski (theorem) 77 78
Salem 117 131
Salem, theorem 132
Schramm, Waterman 172
Schwarz, example 203
Selection 43 46 47
Set, -set 103
Set, -absolute measure 0 15 159
Set, -absolutely measurable 15 159
Set, absolutely measurable 159
Set, analytic (= Suslin) 3 15 188
Set, Blumberg see “Blumberg set”
Set, Borel, 188 195
Set, Borel, 188
Set, c-set 5
Set, closure of 187
Set, connected 196
Set, continuity set of f (C(f)) 106
Set, cozero-set 195
Set, density-closed 195
Set, density-open 5 195
Set, homogeneous second category 99
Set, hyper plane 90 91
Set, interior of 187
Set, k-flat 90
Set, porous 4 62 189
Реклама