Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Goffman C., Nishiura T., Waterman D. — Homeomorphisms in Analysis
Goffman C., Nishiura T., Waterman D. — Homeomorphisms in Analysis



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Homeomorphisms in Analysis

Авторы: Goffman C., Nishiura T., Waterman D.

Аннотация:

This book features the interplay of two main branches of mathematics: topology and real analysis. The material of the book is largely contained in the research publications of the authors and their students from the past 50 years. Parts of analysis are touched upon in a unique way, for example, Lebesgue measurability, Baire classes of functions, differentiability, $C^n$ and $C^{\infty}$ functions, the Blumberg theorem, bounded variation in the sense of Cesari, and various theorems on Fourier series and generalized bounded variation of a function.
Features:

Contains new results and complete proofs of some known results for the first time.

Demonstrates the wide applicability of certain basic notions and techniques in measure theory and set-theoretic topology.

Gives unified treatments of large bodies of research found in the literature.


Язык: en

Рубрика: Математика/Анализ/Продвинутый анализ/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 1998

Количество страниц: 216

Добавлена в каталог: 02.04.2005

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Set, sectionally 0-dimensional      81 83 84
Set, totally imperfect      188
Set, varying monotonicity $(K_f)$      27 29 30
Set, zero-set      11 23 24 195
Sets, classes of, $\mu$-null sets $(\mathcal{N}(X,\mu))$      3
Sets, classes of, absolute measure zero (AMZ)      159 160
Sets, classes of, Borel $(\mathcal{B})$      188
Sets, classes of, Zahorski $(M_i, i = 0,1, 2, 3,4, 5)$      10
Spaces, $E_0(T)$, $E(T)$, $E_C(T)$      113
Spaces, A(T)      124 127
Spaces, M(T)      126
Spaces, U(T)      113 117 119 120
Summability, (C, 1)      112 114 117
Summability, Abel      113
Summability, regular      112 113
System of intervals at x (right, left)      138 149
Tall      10
Taylor, Tricot      201
Tonelli      64 70 176
Ulam      89 97
Variation, $\alpha$-variations, $SV_{\alpha}(f,K)$      36
Variation, $\alpha$-variations, $SV_{\alpha}(f,K_f)$      38
Variation, $\alpha$-variations, $V_{\alpha}(f,K)$      36
Variation, $\alpha$-variations, $V_{\alpha}(f,K_f)$      38
Variation, $\alpha$-variations, $V_{\alpha}^{\delta}(f,K)$      36
Variation, $\alpha$-variations, $V_{\frac1n}(f,K_f)$      31
Variation, essential (ess V(f, [0,1]))      see “Essential variation”
Variation, generalized, $V_H(f,I)$      168
Variation, generalized, $V_{\Lambda}(f,I)$      168
Variation, generalized, $\nu(n;f)$      173
Variation, total (V(f, [a,b]))      21 38 192
Vitali covering      189 195
von Neumann (theorem)      89 97
Wang      172
Waterman      178
Waterman (theorems)      132 170 171 173 175 178
White (theorem)      9
Whitney      78
Young, L. C      172
Young, W. H.      173 176
Zahorski      23 195
Zahorski (theorems)      27 42
Zahorski’s class, $M_0$      41 56
Zahorski’s class, $M_1$      12 14—16 19 41
Zahorski’s class, $\mathcal{M}_0$      41
Zahorski’s class, $\mathcal{M}_1$      41
Zygmund      111 131 178
1 2
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте