|
|
Ðåçóëüòàò ïîèñêà |
Ïîèñê êíèã, ñîäåðæàùèõ: path integral
Êíèãà | Ñòðàíèöû äëÿ ïîèñêà | Kogut J.B., Stephanov M.A. — The Phases of Quantum Chromodynamics: From Confinement to Extreme Environments | | Misner C.W., Thorne K.S., Wheeler J.A. — Gravitation | see “Feynman’s sum over histories” | Ito K. — Encyclopedic Dictionary of Mathematics. Vol. 2 | 351.F | Zinn-Justin J. — Quantum field theory and critical phenomena | 18, 21, 41, 59, 75, 80 | Zinn-Justin J. — Quantum field theory and critical phenomena | 22, 24, 42, 64, 71 | Allen M.P., Tildesley D.J. — Computer simulation of liquids | 272 | Cox D., Katz S. — Mirror symmetry and algebraic geometry | 416—418, 422 (see also “Feynman integral”) | Felsager B. — Geometry, particles and fields | 42,181—188 | Weinberger H.F. — First course in partial defferential equations with complex variables and transform methods | 219 | Dill K.A., Bromberg S. — Molecular Driving Forces: Statistical Thermodynamics in Chemistry and Biology | 307, 388 | Polyanin A., Manzhirov A.V. — Handbook of Mathematics for Engineers and Scientists | 329 | Fradkin E. — Field theories of condensed matter systems | 92, 139, 227, 315 | Greiner W. — Classical mechanics. Point particles and relativity | 109 | Mensky M.B. — Continuous quantum measurements and path integrals | 5, 8, 37, 39, 40, 50 | Thouless D.J. — Topological quantum numbers in nonrelativistic physics | 17 | Kadanoff L.P. — Statistical physics | 45 | Rammer J. — Quantum transport theory | 7, 480 | Lang S.A. — Undergraduate Analysis | 398, 418, 438 | Giamarchi T. — Quantum Physics in One Dimension | 380 | Ito K. — Encyclopedic Dictionary of Mathematics | 351.F | Dittrich T. (ed.), Hanggi P. (ed.), Ingold G.-L. (ed,) — Quantum transport and dissipation | 229—234 | Thaller B. — The Dirac equation | 303 | Muta T. — Foundations of Quantum Chromodynamics | 40 | Greiner W., Schramm S., Stein E. — Quantum chromodynamics | 440 | Haake F. — Quantum signatures of chaos | 253 | Nagaosa N. — Quantum field theory in condensed matter physics | 28 | Green M.B., Schwarz J.H., Witten E. — Superstring Theory (vol. 1) | 28, 36ff, 359 | Kubo R., Toda M., Hashitsume N. — Statistical physics II. Nonequilibrium statistical mechanics | 4 | Rivers R.J. — Path Integral Methods in Quantum Field Theory | 59, 109 | Birrell N.D., Davies P.C.W. — Quantum Fields in Curved Space | 10, 20, 28—35, 155, 171, 288—289, 296, 298, 301 | Deligne P., Kazhdan D., Etingof P. — Quantum fields and strings: A course for mathematicians (Vol. 1) | 27, 481ff, 505ff, 623, 624, 681, 691ff, 1172, 1218ff, 1227, 1231, 1256 | Junker G. — Supersymmetric Methods in Quantum and Statistical Physics | 49, 67—73 | Greiner W. — Quantum mechanics: special chapters | 28, 361 | Siegel W. — Fields | VA1-2, Cl-4 | Grosche C., Steiner F. — Handbook of Feynman path integrals | 6-9, 11, 16-20, 31-36 | Auletta G. — Foundations and Interpretation of Quantum Mechanics | 64, 104 | Murrel J.N., Bosanac S.D. — Introduction to the Theory of Atomic and Molecular Collisions | 69 | Christensen S.M. — Quantum theory of gravity | 244, 301, 455 | Amit D.J. — Field theory, the renormalization group, and critical phenomena | 35—36 | Ohtsuki T. — Quantum invariants: a study of knot, 3-manifolds, and their sets | 407, 425 | Woodhouse N.M.J. — Geometric quantization | 205 | Gardiner C.W. — Quantum Noise | 91 | Baez J.C., Muniain J.P. — Gauge theories, knots, and gravity | 135, 137, 341 | Thomas A.W., Weise W. — The structure of the nucleon | 116 | Kleinert H. — Gauge fields in condensed matter (part 4) | 1449 | Zakrzewski W.J. — Low Dimensional Sigma Models | 1, 2, 6, 16, 17, 19, 28, 257, 265 | Haken H. — Synergetics: an introduction | 79, 83, 84, 176 | Itzykson C., Drouffe J-M. — Statistical field theory. Vol. 1 | 12 | Siegel W. — Fields | VA1-2, C1-4 | Lang S. — Undergraduate analysis | 398, 418, 438 | Avramidi I.G. — Heat Kernel and Quantum Gravity | 10 | Greiner W., Reinhardt J. — Field quantization | 339 | Thaller B. — The Dirac equation | 303 | Ferrario M., Ciccotti G., Binder K. — Computer Simulations in Condensed Matter Systems. Volume 2 | 513 | Griffits D.J. — Introductions to electrodynamics | 24 | Deligne P., Kazhdan D., Etingof P. — Quantum fields and strings: A course for mathematicians | 27, 481ff, 505ff, 623, 624, 681, 691ff, 1172, 1218ff, 1227, 1231, 1256 | Deligne P., Etingof P., Freed D. — Quantum fields and strings: A course for mathematicians, Vol. 2 (pages 727-1501) | 27, 481ff, 505ff, 623, 624, 681, 691ff, 1172, 1218ff, 1227, 1231, 1256 | Zeidler E. — Applied Functional Analysis: Applications to Mathematical Physics | 390 | Salmhofer M. — Renormalization: an introduction | 1 | Lemm J.C. — Bayesian field theory | 39, see also "Functional integral" | Pier J.-P. — Mathematical Analysis during the 20th Century | 63 | Kardar M. — Statistical physics of fields | 220, 229 | Kleinert H. — Gauge fields in condensed matter (part 2) | 12, 29, 159 | Meyer-Ortmanns H., Reisz T. — Principles of phase structures in particle physics | 230, 240 | Bellac M. — Thermal Field Theory (Cambridge Monographs on Mathematical Physics) | 19, 21, 50, 53, 89 | Kittel C., Knight W., Ruderman M. — Berkeley physics course 1. Mechanics | 153 | Jost J. — Bosonic Strings: A mathematical treatment | 3 |
|
|