|
|
Результат поиска |
Поиск книг, содержащих: Event horizon
Книга | Страницы для поиска | Greiner W., Muller B., Rafelski J. — Quantum electrodynamics of strong fields | 557, 560 | Ito K. — Encyclopedic Dictionary of Mathematics. Vol. 2 | 359.D | Palen S. — Schaum's Outline of Astronomy | 179 | Papapetrou A. — Lectures on general relativity | see horizon | Liddle A., Lyth D.H. — Cosmological Inflation and Large-Scale Structure | 47 | Akivis M., Goldberg V. — Differential Geometry of Varieties with Degenerate Gauss Maps | 176 | Heusler M., Goddard P. — Black Hole Uniqueness Theorems | 87 | Frank J., King A., Raine D.J. — Accretion Power in Astrophysics | 133, 319, 336, 337, 339 | Szekeres P. — A Course in Modern Mathematical Physics: Groups, Hilbert Space and Differential Geometry | 546 | Ito K. — Encyclopedic Dictionary of Mathematics | 359.D | Frolov V.P., Novikov I.D. — Black Hole Physics: Basic Concepts and New Developments | 3, 40, 64, 83, 160, 350 | Poisson E. — A relativists toolkit | viii, ix, 28, 163, 170—176, 178, 180, 185, 186, 189—192, 196, 197, 199, 200, 202—205, 207—209, 211—213, 215—217, 220—223 | Stephani H. — Relativity: an introduction to special and general relativity | 325, 360, 370 | De Felice F., Clarke C.J.S. — Relativity on curved manifolds | 245, 338, 424 | Hartle J.B. — Gravity: An Introduction to Einstein's General Relativity | see “Black holes” | O'Neill B. — Semi-Riemannian Geometry: With Applications to Relativity | 438 | Hughston L.P., Tod K.P., Bruce J.W. — An Introduction to General Relativity | 134—136, 147, 160 | Visser M. — Lorentzian wormholes. From Einstein to Hawking | 20, 27, 76, 99, 209, 220, see also “Horizon” | Birrell N.D., Davies P.C.W. — Quantum Fields in Curved Space | see under “Horizon” | Lang K.R. — Astrophysical Formulae: Space, Time, Matter and Cosmology, Vol. 2 | 201, 203 | Schulman L.S. — Techniques and applications of path integration | 229 | O'Neill B. — The Geometry of Kerr Black Holes | 86—87 | D'Inverno R. — Introducing Einstein's Relatvity | 38, 222, 228, 231, 232, 243, 246, 247, 254-6, 260-2, 264, 266, 268, 285, 348-9, 350, 358 | Berry M. — Principles of cosmology and gravitation | see "Horizon" | Volovik G. — Artificial black holes | 9-13, 20, 36, 214-218, 220, 222, 225, 226, 228, 229, 234 | Siegel W. — Fields | IXC7 | Straumann N. — General relativity and relativistic astrophysics | see also “Black holes”, 197, 200, 367—368 | Prigogine I. — From being to becoming: time and complexity in the physical sciences. | 1 | Wald R.M. — Quantum field theory in curved spacetime and black hole thermodynamics | 134, 137—139, 140—141 | Christensen S.M. — Quantum theory of gravity | 136, 139 | Greene B. — The elegant univerce | 79, 81, 79, 342, 344 | Carmeli M. — Classical Fields: General Gravity and Gauge Theory | 401, 402 | Landau L.D., Lifshitz E.M. — The classical theory of fields | 335 | Falcke H. (ed.), Hehl F.W. (ed.) — The galactic black hole: lectures on general relativity and astrophysics | 86, 128, 139, 188 | Raine D.J. — The Isotropic Universe: An Introduction to Cosmology | 225 | Siegel W. — Fields | IXC7 | Hugh D. Young, Roger A. Freedman — University physics with modern physics | 406—407 | Choquet-Bruhat Y. — General Relativity and the Einstein Equations | 92, 419, 652 | 0 — Holt Physics | 868 | Taylor E.F. — Exploring Black Holes: Introduction to General Relativity | see "Horizon" | Wald R.M. — General Relativity | 300, 311—312 | Fritjof Capra — The Tao of physics | 177 | Israel W. — Relativity, Astrophysics and Cosmology | see also "Black hole" | Held A. (ed.) — General relativity and gravitation. 100 years after the birth of Albert Einstein (volume 2) | see "Horizon" | Davies P. — The New Physics | 90 | Berry M.V. — Principles of Cosmology and Gravitation | see "Horizon" | Blin-Stoyle R.J. — Eureka! Physics of particles, matter and the universe | 180 |
|
|