Книга | Страницы для поиска |
Misner C.W., Thorne K.S., Wheeler J.A. — Gravitation | see “Gravitational radius” |
Greiner W., Muller B., Rafelski J. — Quantum electrodynamics of strong fields | 554 |
Biscamp D. — Magnetohydrodynamic turbulence | 238 |
Frank J., King A., Raine D.J. — Accretion Power in Astrophysics | 34, 325, 326, 335 |
Szekeres P. — A Course in Modern Mathematical Physics: Groups, Hilbert Space and Differential Geometry | 545 |
Schroeder M.R. — Schroeder, Self Similarity: Chaos, Fractals, Power Laws | 65 |
Thirring W.E. — Classical Mathematical Physics: Dynamical Systems and Field Theories | 248 |
Stephani H. — Relativity: an introduction to special and general relativity | 190 |
De Felice F., Clarke C.J.S. — Relativity on curved manifolds | 332, 333 |
Thirring W.E. — Course in Mathematical Physics: Classical Dynamical System, Vol. 1 by Walter E. Thirring | 220 |
Hartle J.B. — Gravity: An Introduction to Einstein's General Relativity | see “Schwarzschild geometry” |
Dubrovin B.A., Fomenko A.T., Novikov S.P. — Modern Geometry - Methods and Applications. Part 1. The Geometry of Surfaces, Transformation Groups and Fields | 426 |
Hughston L.P., Tod K.P., Bruce J.W. — An Introduction to General Relativity | 106 f. |
Ludvigsen M. — General relativity. A geometric approach | 152 |
Visser M. — Lorentzian wormholes. From Einstein to Hawking | 19, 61, 359 |
Lang K.R. — Astrophysical Formulae: Space, Time, Matter and Cosmology, Vol. 2 | 178, 197—199 |
Perkins D.H. — Particle Astrophysics | 210, 218 |
Carrol B.W., Ostlie D.A. — An introduction to modern astrophysics | 1111 |
Shore S.N. — The Tapestry of Modern Astrophysics | 92 (see also “Black holes”) |
D'Inverno R. — Introducing Einstein's Relatvity | 214, 215, 218, 223-5, 264 |
Lawden D.F. — An Introduction to Tensor Calculus, Relativity and Cosmology | 146, 156 |
Kundt W. — Astrophysics. A Primer | 99 |
Straumann N. — General relativity and relativistic astrophysics | 171 |
Weinberg S. — Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity | 207 |
Carmeli M. — Classical Fields: General Gravity and Gauge Theory | 160 |
Eliezer Sh., Ghatak A., Hora H. — Fundamentals of Equations of State | 6 |
Bona C., Palenzuela-Luque C. — Elements of Numerical Relativity: From Einstein's Equations to Black Hole Simulations (Lecture Notes in Physics) | 15 |
Shu F.H. — The Physical Universe: An Introduction to Astronomy | 134—135 |
Wheeler J.A. — Topics of modern physics. Vol. I. Geometrodynamics | 121 |
Raine D.J. — The Isotropic Universe: An Introduction to Cosmology | 226, 227 |
Hugh D. Young, Roger A. Freedman — University physics with modern physics | 406—407 |
Choquet-Bruhat Y. — General Relativity and the Einstein Equations | 78 |
Collins G.W. — The virial theorem in stellar astrophysics | 81, 84, 86, 91 |
Biskamp D. — Magnetohydrodynamic Turbulence | 238 |
0 — Holt Physics | 868 |
Taylor E.F. — Exploring Black Holes: Introduction to General Relativity | 2-7—11, 2-21—22 |
Blum E.K., Lototsky S.V. — Mathematics of Physics and Engineering | 113, 415 |
Anderson J.L. — Principles of Relativity Physics | 385 |
Adams S. — Relativity: An Introduction to Space-Time Physics | 243, 258 |
Wald R.M. — General Relativity | 124—125 |
Snygg J. — Clifford algebra: a computational tool for physicists | 116 |
Held A. (ed.) — General relativity and gravitation. 100 years after the birth of Albert Einstein (volume 2) | 106, 371 |
Davies P. — The New Physics | 25, 144—145, 169—170, 175 |
Snygg J. — Clifford algebra: a computational tool for physicists | 116 |
Stamatescu I., Seiler E. — Approaches to Fundamental Physics | 290, 310 |
Foster J., Nightingale J. — A Short Course in General Relativity (Longman mathematical texts) | 123 |
Thirring W., Harrell E.M. — Classical mathematical physics. Dynamical systems and field theory | 248 |
D.H. Perkins — Introduction to high energy physics | 332 |
D.H. Perkins — Introduction to high energy physics | 332 |