| Êíèãà | Ñòðàíèöû äëÿ ïîèñêà | 
| Gray R.M. — Probability, Random Processes and Ergodic Properties | 125 | 
| Falconer K. — Fractal Geometry. Mathematical Foundations and applications | 191, 191—194 | 
| Falconer K. — Fractal Geometry: Mathematical Foundations and Applications | 208—211 | 
| Fisher Y. — Fractal Image Compression. Theory and Application | 224 | 
| Dorfman J.R. — Introduction to Chaos in Nonequilibrium Statistical Mechanics | 51, 59, 62, 63, 123, 132, 163, 164, 170, 176 | 
| Barnsley M. — Fractals Everywhere | 366—367, 370, 371, 374, 378 | 
| Frisch U. — Turbulence. The legacy of A.N. Kolmogorov | 34, 35, 38 | 
| Landsman N.P. — Mathematical topics between classical and quantum mechanics | 283 | 
| Athreya K.B., Ney P.E. — Branching Processes | see Stationary measure | 
| Brin M., Stuck G. — Introdution to dynamical system | 70, 85 | 
| Carmona R. — Practical Time-Frequency Analysis | 106 | 
| Cappe O., Ryden T., Moulines E. — Inference in Hidden Markov Models | 511, 527 | 
| Hensley D. — Continued Fractions | 56 | 
| Chueshov I. — Monotone Random Systems: Theory and Applications | 51 | 
| Falconer K.J. — Techniques in Fractal Geometry | 38, 79, 79—84, 97, 102—103, 175, 175—176 | 
| Ott E. — Chaos in dynamical systems | 54 | 
| Nagashima H., Baba Y. — Introduction to chaos: physics and mathematics of chaotic phenomena | 38, 133 | 
| Rudin W. — Functional analysis | 123 | 
| Makarov B.M. — Selected Problems in Real Analysis | 123, 132, 136 | 
| Katayama T., Sugimoto S. — Statistical Methods in Control and Signal Processing | 507 | 
| Dittrich T. (ed.), Hanggi P. (ed.), Ingold G.-L. (ed,) — Quantum transport and dissipation | 303 | 
| Nagel R., Derdinger R., Günther P. — Ergodic theory in the perspective of functional analysis | II/1a, IV/20 | 
| Nitecki Z. (ed), Robinson C. (ed) — Global Theory of Dynamical Systems | 4, 16, 23 | 
| Thaller B. — The Dirac equation | 88 | 
| Kuczma M., Choczewski B., Ger R. — Iterative Functional Equations | see “Stationary measure” | 
| Muta T. — Foundations of Quantum Chromodynamics | 48, 52 | 
| Duffie D. — Security Markets. Stochastic Models | 181 | 
| Holden A.V. — Chaos | 56, 85, 230, 231 | 
| Hilborn R.C. — Chaos and nonlinear dynamics | 330—335 | 
| Bogachev V.I. — Measure Theory Vol.2 | II: 267, 318 | 
| Shanbhag D.N. (ed.), Rao C.R. (ed.) — Stochastic Processes - Modelling and Simulation | 537 | 
| Bingham N.H., Goldie C.M., Teugels J.L. — Regular variation | 406—407, 428 | 
| Baladi V. — Positive Transfer Operators And Decay Of Correlations | 13 | 
| Lang S. — SL2: With 33 Figures | 37 | 
| Al-Khalili J.S., Roeckl E. — The Euroschool Lectures on Physics with Exotic Beams, Vol. 2 | 37 | 
| Mattheij R.M.M., Molenaar J. — Ordinary Differential Equations in Theory and Practice (Classics in Applied Mathematics) (No. 43) | 153 | 
| Sattinger D.H., Weaver O.L. — Lie groups and algebras with applications to physics, geometry, and mechanics | 91—93 | 
| Lichtenberg A.J., Liebermen M.A. — Regular and Chaotic Dynamics | see “Invariant distribution” | 
| Guiseppe Da Prato — Stochastic equations in infinite dimensions | 303 | 
| Barreira L. — Dimension and Recurrence in Hyperbolic Dynamics | 13 | 
| Mackey M.C. — Time's arrow: the origins of thermodynamic behavior | 41 | 
| Holmes P., Lumley J.L., Berkooz G. — Turbulence, Coherent Structures, Dynamical Systems and Symmetry | 18, 122—125, 197—199, 381—384, 387—390 | 
| Zhidkov P.E. — Korteweg-de Vries and Nonlinear Schrodinger Equations: Qualitative Theory | 106 | 
| Gilmore R. — Lie Groups, Lie Algebras and Some of Their Applications | 209, 319, 391—401 | 
| Afraimovich V.S., Hsu S.-B. — Lectures on Chaotic Dynamical Systems | 97 | 
| Hyers D.H., Isac G., Rassias T.M. — Stability of functional equations in several variables | 84 | 
| Williamson J.H. — Lebesgue Integration | 94 | 
| Anderson T.W. (ed.), Fang K.T. (ed.), Olkin I. (ed.) — Multivariate Analysis and Its Applications | 177 | 
| Flatto L. — Poncelet's Theorem | 154 | 
| Semadini Z. — Banach Spaces of Continuous Functions. Vol. 1 | 422 | 
| Abramovich Y.A., Aliprantis C.D. — An Invitation to Operator Theory | 355 | 
| Dembo A., Zeitouni O. — Large deviations techniques and applications | 265, 269, 270 | 
| Monk J.D., Bonnet R. — Handbook Of Boolean Algebras Vol.2 | 595 | 
| Hausner M., Schwartz J.T. — Lie groups, Lie algebras | 19 | 
| Devaney R.L., Keen L. — Chaos and Fractals: The Mathematics Behind the Computer Graphics | 139 | 
| Silverman J. — The arithmetic of dynamical systems | 307 | 
| Thaller B. — The Dirac equation | 88 | 
| Liu P.D., Qian M., Dold A. — Smooth Ergodic Theory of Random Dynamical Systems | 24, 111, 130, 207 | 
| Helgason S. — Topics in harmonic analysis on homogeneous spaces | 1 | 
| Lasota A., Mackey M.C. — Probabilistic Properties of Deterministic Systems | 45, 169 | 
| Kunze M. — Non-Smooth Dynamical Systems | 135 | 
| Kloeden P/, Platen E., Schurz H. — Numerical solution of SDE through computer experiments | 246 | 
| Peszat S., Zabczyk J. — Stochastic partial differential equations with Levy noise: An evolution equation approach | 287 | 
| Kharazishvili A.B. — Nonmeasurable Sets and Functions | 3 | 
| Revuz D., Yor M. — Continuous martingales and Brownian motion | 409 | 
| Fayolle G., Iasnogorodski R., Malyshev V. — Random Walks in the Quarter-Plane: Algebraic Methods, Boundary Value Problems and Applications (Stochastic Modelling and Applied Probability) | 3 | 
| Cheney W. — Analysis for Applied Mathematics | 385, 392 | 
| Falconer K. — Fractal geometry: mathematical foundations and applications | 208, 208—211 | 
| Abramovich Y., Aliprantis C. — An Invitation to Operator Theory (Graduate Studies in Mathematics, V. 50) | 355 | 
| Prigogine I. (ed.) — Advances in Chemical Physics. Volume XIX | 351 | 
| Badii R., Politi A. — Complexity: Hierarchical structures and scaling in physics | 86, 102 | 
| Lang S. — SL2 (R) (Graduate Texts in Mathematics) | 37 | 
| Jorgensen P.E.T. — Analysis and Probability: Wavelets, Signals, Fractals | see "measure, invariant" |