| Книга | Страницы для поиска |
| Guillemin V., Pollack A. — Differential topology | 71 |
| Rudin W. — Principles of Mathematical Analysis | 101 |
| Reed M., Simon B. — Methods of Modern mathematical physics (vol. 1) Functional analysis | 94 |
| Ito K. — Encyclopedic Dictionary of Mathematics. Vol. 2 | 425.Q |
| Harris J. — Algebraic Geometry: a first course | 183—184, 215, 259 |
| Lee J.M. — Riemannian Manifolds: an Introduction to Curvature | 132 |
| Lee J.M. — Introduction to Smooth Manifolds | 139 |
| Millman R.S., Parker G.D. — Elements of Differential Geometry | 103 |
| Lefschetz S. — Algebraic topology | 26 |
| Folland J.B. — Real Analysis: Modern Techniques and Their Applications | 117 |
| Behnke H., Bachmann F., Fladt K. — Fundamentals of Mathematics, Volume II: Geometry | 662 |
| Le Bruyn L. — Noncommutative geometry | 127 |
| Dudley R.M., Fulton W. (Ed) — Real Analysis and Probability | 63 |
| Kanatani K. — Statistical Optimization for Geometric Computation: Theory and Practice | 66 |
| Hirzebruch F. — Topological Methods in Algebraic Geometry | 30 |
| James I.M. — Topological and Uniform Spaces | 80—82, 84, 132, 144—147 |
| Dugunji J. — Topology | 144 |
| Morris S.A. — Topology without tears | 104, 141 |
| Duistermaat J.J., Kolk J.A.C. — Multidimensional Real Analysis II: Integration | 139 |
| Duistermaat J.J., Kolk J.A.C. — Multidimensional Real Analysis I(Cambridge Studies in Advanced Mathematics #86), Vol. 1 | 139 |
| Reed M., Simon B. — Methods of Functional Analysis (in 4 volumes). Volume 1: Functional Analysis | 94 |
| Royden H.L. — Real Analysis | 148 |
| Poeschel J. — Inverse Spectral Theory | 152 |
| Kobayashi S., Nomizu K. — Foundations of Differential Geometry, Volume 2 | 2 |
| Royden H.L. — Real Analysis | 148 |
| Ito K. — Encyclopedic Dictionary of Mathematics | 425.Q |
| Golubitsky M., Guillemin V. — Stable Mappings and Their Singularities | 71 |
| Bogachev V.I. — Measure Theory Vol.2 | II: 4 |
| Kolmogorov A.N., Fomin S.V. — Introductory real analysis | 86 |
| Kühnel W., Hunt B. — Differential Geometry: Curves - Surfaces - Manifolds | 6, 56 |
| Hu S.-T. — Elements of real analysis | 134 |
| Munkres J. — Topology | 195 (see also “Normality”) |
| Hu S.-T. — Elements of general topology | 57 |
| Fine B., Rosenberger G. — Fundamental Theorem of Algebra | 147 |
| Monk J.D., Bonnet R. — Handbook Of Boolean Algebras Vol.3 | 1245 |
| Nagata M. — Field Theory | 152 |
| Simmons G.F. — Introduction to topology and modern analysis | 133 |
| Pears A.R. — Dimension theory of general spaces | 17 |
| Anderson G.A., Granas A. — Fixed Point Theory | 591 |
| Haller G. — Chaos Near Resonance | 373, 0, 2 |
| Alekseevskij D.V., Vinogradov A.M., Lychagin V.V. — Geometry I: Basic Ideas and Concepts of Differential Geometry | 171 |
| Grosche C. — Path integrals, hyperbolic spaces, and Selberg trace formulae | 57 |
| Hu S.T. — Introduction to general topology | 57 |
| Montgomery D., Zippin L. — Topological transformation groups | 38 |
| Argyros I. — Computational Theory of Iterative Methods | 19 |
| Kinsey L.C. — Topology of surfaces | 46 |
| Beth E.W. — The foundations of mathematics: A study in the philosophy of science | 160 |
| Munkres J.R. — Topology: A First Course | 195, see also “Normality” |
| McShane E.J., Botts T.A. — Real Analysis | 95, 97 |
| Kuratowski K. — Introduction To Set Theory & Topology | 145 |
| Loomis L.H. — An introduction to abstract harmonic analysis | 6 |
| Bachman G. — Elements of Abstract Harmonic Analysis | 117 |
| McCoy R.A., Ntantu I. — Topological Properties of Spaces of Continuous Functions | 69 |
| Pier J.-P. — Mathematical Analysis during the 20th Century | 42 |
| Collatz L. — Functional analysis and numerical mathematics | 20 |
| James I.M. (ed.) — Topological and Uniform Spaces | 80—82, 84, 132, 144—147 |
| Comfort W.W., Negrepontis S. — The Theory of UltraFilters | 22 |
| Lundell A., Weingram S. — The topology of CW complexes | 1 |