| Êíèãà | Ñòðàíèöû äëÿ ïîèñêà |
| Taylor M.E. — Partial Differential Equations. Basic theory (vol. 1) | 36 |
| Berline N., Getzler E., Vergne M. — Heat Kernels and Dirac Operators | 17 |
| Gomez C., Ruiz-Altaba M., Sierra G. — Quantum Groups in Two-Dimensional Physics | 215 |
| Berger M. — A Panoramic View of Riemannian Geometry | 183, 720 |
| Olver P.J. — Equivalence, Invariants and Symmetry | 21, 23, 28, 49, 51, 69, 78, 120, 257, 417 |
| Oprea J. — Differential Geometry and Its Applications | 319 |
| Gross M., Huybrechts D., Joyce D. — Calabi-Yau Manifolds and Related Geometries: Lectures at a Summer School in Nordfjordeid, Norway, June 2001 | 7 |
| Baker A. — Matrix Groups: An Introduction to Lie Group Theory | 67, 68 |
| Goldberg S.I. — Curvature and homology | 96, 106 |
| Millman R.S., Parker G.D. — Elements of Differential Geometry | 144 (9.5), 217 |
| Melrose R. — The Atiyah-Singer index theorem (part 3) | 28 |
| Lavendhomme R. — Basic Concepts of Synthetic Differential Geometry | 73 |
| Ward R.S., Wells R.O. — Twistor geometry and field theory | 94, 142, 434, 441 |
| Goldstein H., Poole C., Safko J. — Classical mechanics | 171 |
| Artin M. — Algebra | 290 |
| Voisin C. — Hodge theory and complex algebraic geometry 1 | 46 |
| Clarkson P.A. — Applications of Analytic and Geometric Methods to Nonlinear Differential Equations | 133 |
| Kock A. — Synthetic Differential Geometry | 46 |
| Liao X., Wang L., Yu P. — Stability of Dynamical Systems, Vol. 5 | 595 |
| Street R., Murray M. (Ed), Broadbridge Ph. (Ed) — Quantum Groups: A Path to Current Algebra | 32, 33 |
| Michor P.W. — Topics in Differential Geometry | 18 |
| Torretti R. — Relativity and Geometry | 268 |
| Hilton P.J., Stammbach U. — A course in homological algebra | 229 |
| Cannas da Silva A., Weinstein A. — Geometric Models for Noncommutative Algebra | 6 |
| Ivey Th.A., Landsberg J.M. — Cartan for Beginners: Differential Geometry Via Moving Frames and Exterior Differential Systems | 336 |
| Duistermaat J.J., Kolk J.A.C. — Multidimensional Real Analysis II: Integration | 169 |
| Duistermaat J.J., Kolk J.A.C. — Multidimensional Real Analysis I(Cambridge Studies in Advanced Mathematics #86), Vol. 1 | 169 |
| Naber G.L. — Topology, Geometry and Gauge Fields | 7, 15 |
| Balescu R. — Equilibrium and nonequilibrium statistical mechanics | 7, 14 |
| Henneaux M., Teitelboim C. — Quantization of Gauge Systems | 53, 118, 370, 483 |
| Szekeres P. — A Course in Modern Mathematical Physics: Groups, Hilbert Space and Differential Geometry | 432 |
| Thaller B. — The Dirac equation | 49 |
| Gallier J. — Geometric Methods and Applications: For Computer Science and Engineering | 241, 377, 383, 397, 399 |
| Thirring W.E. — Classical Mathematical Physics: Dynamical Systems and Field Theories | 72 |
| Simon B. — Representations of Finite and Compact Groups | 125 |
| Thirring W.E. — Course in Mathematical Physics: Classical Dynamical System, Vol. 1 by Walter E. Thirring | 62 |
| Tapp K. — Matrix Groups for Undergraduates | 114 |
| O'Neill B. — Semi-Riemannian Geometry: With Applications to Relativity | see “Bracket operation” |
| Kühnel W., Hunt B. — Differential Geometry: Curves - Surfaces - Manifolds | 138, 223, 236 |
| Ludvigsen M. — General relativity. A geometric approach | 64, 88 |
| Reutenauer Ch. — Free Lie Algebras | 1,18 |
| Sternberg Sh. — Lectures on Differential Geometry | 94 |
| Audin M. — Torus Actions on Symplectic Manifolds | 32, 33, 59 |
| Shirer H.N. — Nonlinear Hydrodynamic Modeling: A Mathematical Introduction | 491 |
| Wawrzynczyk A. — Group representations and special functions | 27 |
| O'Neill B. — The Geometry of Kerr Black Holes | see “Bracket operation” |
| D'Inverno R. — Introducing Einstein's Relatvity | 66, 67, 214 |
| Bertlmann R.A. — Anomalies in Quantum Field Theory | 43, 82—84, 89, 472 |
| Gilmore R. — Lie Groups, Lie Algebras and Some of Their Applications | 105, 224 |
| Arwini K. — Information Geometry: Near Randomness and Near Independence | 25 |
| Oprea J. — Differential Geometry and Its Applications | 403, 423 |
| Christensen S.M. — Quantum theory of gravity | 405 |
| Mangiarotti L., Sardanashvily G. — Connections in Classical and Quantum Field Theory | 12 |
| Woodhouse N.M.J. — Geometric quantization | 259 |
| Baez J.C., Muniain J.P. — Gauge theories, knots, and gravity | 35, 186 |
| Postnikov M. — Lectures in Geometry. Semestr V. Lie Groups and Lie Algebras | 60 |
| Onishchik A.L. (ed.) — Lie Groups and Lie Algebras | 111 |
| Argyros I. — Computational Theory of Iterative Methods | 329 |
| Choquet-Bruhat Y., DeWitt-Morette C., Dillard-Bleick M. — Analysis, manifolds and physics. Part I. | 134 |
| de Graaf W.A. — Lie Algebras: Theory and Algorithms | 2 |
| Israel W. (ed.) — Relativity, astrophysics and cosmology | 58 |
| Onishchik A.L. (ed.) — Lie Groups and Lie Algebras (volume 1) | 111 |
| Marathe K.B., Martucci G. — The mathematical foundations of gauge theories | 9 |
| Gorbatsevich V.V., Vinberg E.B., Onishchik A.L. — Foundations of Lie theory and Lie transformation groups | 111 |
| Porteous I.R. — Clifford Algebras and the Classical Groups | 239 |
| Carroll R.W. — Mathematical physics | 59 |
| Tzenov S.I. — Contemporary Accelerator Physics | 105 |
| Thaller B. — The Dirac equation | 49 |
| Loomis L.H., Sternberg S. — Advanced calculus | 389 |
| Ivey T.A., Landsberg J.M. — Cartan for beginners: differential geometry via moving frames exterior differential systems | 336 |
| Naber G.L. — Topology, Geometry and Gauge Fields | 7, 15 |
| van der Meer J.-C. — The Hamiltonian Hopf Bifurcation | 8 |
| Schutz B.F. — A first course in general relativity | 180 |
| Penrose R., Rindler W. — Spinors and space-time. Spinor and twistor methods in space-time geometry | 16, 135, 174 |
| Ticciati R. — Quantum field theory for mathematicians | 60, 139 |
| Israel W. (ed.) — Relativity, astrophysics and cosmology | 58 |
| Chandrasekhar S. — The Mathematical Theory of Black Holes | 14, 38 |
| Flanders H. — Differential Forms with Applications to the Physical Sciences | 180 |
| Schutz B. — Geometrical Methods in Mathematical Physics | 45, 75, 157
Lie bracket, closure of a set of |
| Choquet-Bruhat Y., Dewitt-Morette C. — Analysis, manifolds and physics | 134 |
| Thirring W., Harrell E.M. — Classical mathematical physics. Dynamical systems and field theory | 72 |
| Bhatia R. — Matrix Analysis | 167 |
| Rosenberg S. — The Laplacian on a Riemannian manifold | 126 |
| J. M. Borwein, Qi.Zhu — Techniques of Variational Analysis (CMS Books in Mathematics) | 299 |
| J. M. Borwein, Qi.Zhu — Techniques of Variational Analysis (CMS Books in Mathematics) | 299 |
| J. M. Borwein, Qi.Zhu — Techniques of Variational Analysis (CMS Books in Mathematics) | 299 |