|
|
Результат поиска |
Поиск книг, содержащих: instantons
Книга | Страницы для поиска | Kogut J.B., Stephanov M.A. — The Phases of Quantum Chromodynamics: From Confinement to Extreme Environments | | Zinn-Justin J. — Quantum field theory and critical phenomena | 477, 770, 785 | Enns R.H., Mc Guire G.C. — Nonlinear physics with mathematica for scientists and engineers | 450 | Ward R.S., Wells R.O. — Twistor geometry and field theory | 273 | Vilenkin A., Shellard E.P.S. — Cosmic strings and other topological defects | 131, 377, 415, 452—457 | Debnath L. — Nonlinear Partial Differential Equations for Scientists and Engineers | 99 | Marmo G., Skagerstam B.S., Stern A. — Classical topology and quantum states | 122, 267 | Tarantello G. — Self-Dual Gauge Field Vortices: An Analytical Approach | 5, 28 | Pokorski S. — Gauge field theories | 286, 289 | DeWitt B.S. — The global approach to quantum field theory (Vol. 1) | 781—783 | Bleecker D. — Gauge Theory and Variational Principles | 168—169 | Bailin D., Love A. — Introduction to Gauge Field Theory | 212—213 | Fulling S. — Aspects of Quantum Field Theory in Curved Spacetime | 159 | Shifman M.A. — ITEP lectures on particle physics and field theory (Vol. 1) | 672 | O'Raifeartaigh L. — Group Structure of Gauge Theories | 83, 126 | Rivers R.J. — Path Integral Methods in Quantum Field Theory | 289 | Collins P.D., Squires E.J., Martin A.D. — Particle Physics and Cosmology | 118 | Birrell N.D., Davies P.C.W. — Quantum Fields in Curved Space | 291 | Collins P.D.B., Martin A.D., Squires E.J. — Particle Physics and Cosmology | 118 | Bertlmann R.A. — Anomalies in Quantum Field Theory | 311—320, 426 | Christensen S.M. — Quantum theory of gravity | 45, 60, 105, 262, 296 | Nash C. — Differential Topology and Quantum Field Theory | 25—26, 213—215, 227—242, 258 (see also Monopoles) | Polchinski J. — String theory (volume 1). An introduction to the bosonic string | 316 | Cheng T.-P., Li L.-F. — Gauge Theory of Elementary Particle Physics | 292, 476-93 (see also axial U(1) problem, axion, anomaly, homotopic classes, $\theta$-vacuum, strong CP problem) | Weinberg S. — The Quantum Theory of Fields. Vol. 3 Supersymmetry | 131—2, 268, 270, 284, 295 | Weinberg S. — The Quantum Theory of Fields. Vol. 2 Modern Applications | 286, 421, 426—427, 436, 450—464 | Roepstorf G. — Path integral approach to quantum physics | 232, 291 | Konopleva N.P., Popov V.N. — Gauge Fields | 27—28, 100, 135—137, 148 | Helffer B. — Semi-Classical Analysis for the Schrodinger Operator and Applications | $\S$4.5 | Shifman M.A. — ITEP lectures on particle physics and field theory (Vol. 2) | 672 | Hooft G.T. — Under the spell of the gauge principle | 6, 270, 321 | Leader E., Predazzi E. — An introduction to gauge theories and modern particle physics | 2.301, 2.312, 2.341 | Penrose R., Rindler W. — Spinors and space-time. Spinor and twistor methods in space-time geometry | (129) | Ticciati R. — Quantum field theory for mathematicians | 474 | Pier J.-P. — Mathematical Analysis during the 20th Century | 309 | Polchinski J. — String theory (volume 2). Superstring theory and beyond | 334—335 | Meyer-Ortmanns H., Reisz T. — Principles of phase structures in particle physics | 169 | Collins P.D.B., Martin A.D., Squires E.J. — Particle Physics and Cosmology | 118 | Rivasseau V. — From Perturbative to Constructive Renormalization | 149 | Odifreddi P., Sangalli A., Dyson F. — The Mathematical Century: The 30 Greatest Problems of the Last 100 Years | 58 | Nash C., Sen S. — Topology and geometry for physicists | 256—297 |
|
|