Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Helffer B. — Semi-Classical Analysis for the Schrodinger Operator and Applications
Helffer B. — Semi-Classical Analysis for the Schrodinger Operator and Applications



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Semi-Classical Analysis for the Schrodinger Operator and Applications

Автор: Helffer B.

Язык: en

Рубрика: Математика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 1988

Количество страниц: 107

Добавлена в каталог: 15.08.2008

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Agmon distance      $\S$3.2
Aharonov-Bohm effect      $\S$7.0
Approximate solutions mod O($h^{3/2}$)      
$\S$2.2
Approximate solutions mod O($h^{\infty}$)      
$\S$2.3
Approximate solutions O(exp($-\varepsilon_{0}/h$))      $\S$2.3
B.K.W constructions      $\S$2.3
Band (of spectrum)      $\S$6.1
Betti numbers      $\S$5 1
Bicharacteristics      $\S$1.1
Bottom      $\S$2
Classical mechanics      $\S$1.1
Compact resolvent      $\S$1 3
Comparison between eigenfunctions and B.K.W. constructions      
$\S$4.4
Counting function N($\lambda$)      $\S$1.3
Critical point (index of a)      $\S$5.1
de Rham complex      $\S$5.1
Decay of solutions      $\S$3
Dirac operator      $\S$2 (remark 2.3.10)
Discrete spectrum      $\S$1.3
Distance between closed set in a Hilbert      $\S$4.1
Double well problem      $\S$4.3
Eiconal equation      $\S$2.1
Energy estimates      $\S$3.1
Essentially self adjoint      $\S$1.2
Euler characteristics      $\S$5.1
Flea of the elephant      $\S$7.2.2
Floquet theory      $\S$6.1
Flux of magnetic fields      $\S$7.2
Formal symbol      $\S$2.3
Formally self adjoint      $\S$1.2
Fundamental matrix      $\S$2.4
Gauge invariance      $\S$7.0
Geodesics      $\S$4.4
Geodesics (non degenerate minimal)      $\S$4.4 (4.4.41-4.4.42)
Green formula      $\S$3.1
Grushin type operators      $\S$3.4
Hamiltonian flow      $\S$1.1
harmonic oscillator      $\S$2.1
Hermite functions      $\S$2.1
Hodge theory      $\S$5.1
Index of a critical point      $\S$5.1
instantons      $\S$4.5
interaction matrix      $\S$4.3
Interior product      $\S$5.2
Jacobi metric      $\S$3.2
Kramers theorem      $\S$7.3
Lagrangean subspace      $\S$2.4
Laplace Beltrami operator      $\S$1.2
Laplace Beltrami operator on p-forms      $\S$5.1
Lattice      $\S$6.2
Length (of the Band)      $\S$6.2
Linearization theorem      $\S$2.4
Localization of the $L^{2}$ norm      $\S$3.3
Localization of the spectrum mod O($h^{3/2}$)      $\S$3.4
Magnetic fields      $\S$7
Magnetic flea      $\S$7.2.2
Magnetic potential vectors      $\S$7.0
Min-max principle      $\S$1.3 7.2
Minimal geodesics (non degenerate)      $\S$4.4 (4.4.41-4.4.42)
Morse function      $\S$5.1
Morse inequalities      $\S$5.1
Multiple wells problems      
$\S$3.5
Multiplicity of the eigenvalues      $\S$7.3
Non degenerate minima      $\S$2.0
Non degenerate minimal geodesics      $\S$4.4 (4.41-4.4.42)
One well Dirichlet problem      $\S$3.3
Periodic electric potentials      $\S$6.1
Pointwise decay estimates      $\S$3.3
quantum mechanics      $\S$1.2
Quasimodes (see also approximate solutions)      $\S$6.2
Remainder term      $\S$1.3
Schr$\hat{o}$dinger operator      $\S$1.2
Schr$\hat{o}$dinger operator (with magnetic fields)      $\S$1.3
Schr$\hat{o}$dinger operator (with periodic potential)      
$\S$6.1
Semi-classical analysis      $\S$$\S$1 2 3 4 5 6.2 7.2.2 7.3
Spectral theory      $\S$1.3
Splitting      $\S$4.3
Stable Manifold Theorem      $\S$2.4
Stationnary phase theorem      $\S$4.4
Strong Morse inequalities(S.M.I)      $\S$5.2
Symplectic manifold      $\S$1.1
Transport equation      $\S$2.3(2.3.6) src='/math_tex/7d2e1b8689e4bf3e2eb6c0bda84acf1082.gif'
Tunneling effect      $\S$4.3
W.K.B. constructions      $\S$2.3
Weak Morse inequalities      $\S$5.1
Weyl calculus      $\S$1.2
Witten’s complex      $\S$5.1
Witten’s Laplacian      $\S$5.1
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте