Êíèãà | Ñòðàíèöû äëÿ ïîèñêà |
Êîðìåí Ò., Ëåéçåðñîí ×., Ðèâåñò Ð. — Àëãîðèòìû: ïîñòðîåíèå è àíàëèç | 51 |
Kedlaya K.S., Poonen B., Vakil R. — The William Lowell Putnam Mathematical Competition 1985–2000: Problems, Solutions, and Commentary | 61, 164, 244 |
Bartle R.G. — The Elements of Real Analysis | 119, 379 |
Apostol T.M. — Calculus (vol 1) | 384 |
Bruce C.Berndt — Ramanujan's Notebooks (part 5) | 531, 543 |
Keisler H.J. — Elementary calculus | 505 |
Bruce C.Berndt — Ramanujan's Notebooks (part 1) | 33—35, 94—95, 138—139, 182—183 |
Kisacanin B. — Mathematical problems and proofs. Combinatorics, Number theory, and Geometry | 195n |
Apostol T.M. — Mathematical Analysis | 186 |
Mauch S. — Introduction to Methods of Applied Mathematics or Advanced Mathematical Methods for Scientists and Engineers | 321, 342 |
Widder D.V. — Advanced calculus | 240 |
Smirnov V.I. — Higher mathematics. Vol.1 | 318, 326 |
Benson D. — Mathematics and music | 133, 266 |
Braselton J.P. — Maple by Example | 172 |
Estep D.J. — Practical Analysis in One Variable | 62, 119 |
Borwein P., Choi S., Rooney B. — The Riemann Hypothesis | 10, 11, 16 |
Sagan H. — Advanced Calculus of Real-Valued Functions of a Real Variable and Vector-Valued Functions of a Vector Variable | 572 |
Polyanin A., Manzhirov A.V. — Handbook of Mathematics for Engineers and Scientists | 339 |
Devlin K.J. — Language of Mathematics: Making the Invisible Visible | 105 |
Everest G., Ward T. — An Introduction to Number Theory | 9 |
Pugh C.C. — Real Mathematical Analysis | 180, 184 |
Sloane N.J.A. — Handbook of Integer Sequences | 1385 |
Rockmore D. — Stalking the Riemann Hypothesis: The Quest to Find the Hidden Law of Prime Numbers | 53—61, 87 |
Khuri A.I. — Advanced calculus with applications in statistics | 145 |
Jones J.A., Jones J.M. — Elementary Number Theory | 163 |
Franklin J., Daoud A. — Introduction to Proofs in Mathematics | 108 |
Chrystal G. — Algebra. An Elementary Textbook, Vol. 1 | 500 |
Polya G. — Problems and Theorems in Analysis: Theory of Functions. Zeros. Polynomials. Determinants. Number Theory. Geometry | VIII 250 153, VIII 251 154 |
Boas R.P. — A Primer of Real Functions | 196, 237, 242, 256 |
Burn R.P. — Numbers and Functions: Steps to Analysis | 5.30, 5H |
Sokolnikoff I.S. — Higher Mathematics for Engineers and Physicists | 8 |
Fishbane P.M. — Physics For Scientists and Engineers with Modern Physics | 416 |
Greenberg M.D. — Advanced engineering mathematics | 219, 856, 875 |
Apostol T.M. — Calculus: One-Variable Calculus with an Introduction to Linear Algebra, Vol. 1 | 384 |
van de Hulst H.C. — Light Scattering by Small Particles | 215, 216 |
Sheil-Small T. — Complex polynomials | 126 |
von zur Gathen J., Gerhard J. — Modern computer algebra | 615 |
Knuth D.E. — The art of computer programming (Vol. 1. Fundamental algorithms) | 74,156—157 |
Strichartz R.S. — The way of analysis | 255 |
D'Angelo J.P., West D.B. — Mathematical Thinking: Problem-Solving and Proofs | 282 |
Kincaid D., Cheney W. — Numerical analysis: mathematics of scientific computing | 47 |
Murty M.R. — Problems in analytic number theory | 25 |
Young R.M. — Excursions in Calculus: An Interplay of the Continuous and the Discrete | 287—288, 295—296 |
Krantz S.G. — Handbook of Real Variables | 24 |
Kreyszig E. — Advanced engineering mathematics | 670 |
Steeb W.- H. — Problems and Solutions in Introductory and Advanced Matrix Calculus | 48 |
Knuth D.E. — The art of computer programming (vol. 1 Fundàmental algorithms) | 75, 160—161 |
Knopp K. — Theory and applications of infinite series | see "Series" |
Bayin S.S. — Mathematical Methods in Science and Engineering | 432 |
Murray D.A. — Differential and integral calculus | 234 |
Rektorys K. — Survey of applicable mathematics | 382 |
Huggins E.R. — Physics 2000 | 16—3 |
Stanley R.P. — Enumerative Combinatorics: Volume 2 | (see Series, harmonic) |
Aliprantis C. — Principles of real analysis | 33 |
Gleason A. — Fundamentals of Abstract Analysis | 196 |
Knopp K., Bagemihl F. — Infinite Sequences and Series | 47 |
Kazarinoff N. — Analytic inequalities | 79 |
Demidovich B. (ed.) — Problems in mathematical analysis | 294, 296, 297 |
Rektorys K. (ed.) — Survey of Applicable Mathematics | 382 |
Hugh D. Young, Roger A. Freedman — University physics with modern physics | 512 |
Lane S.M. — Mathematics, form and function | 333 |
Strange A. — Electronic Music: Systems, Techniques and Controls | 15 |
Daepp U., Gorkin P. — Reading, writing and proving. Close look at mathematics | 216 |
Wrede R.C., Spiegel M. — Theory and problems of advanced calculus | 266 |
Derbyshire J. — Prime Obsession: Bernhard Riemann and the greatest unsolved problem in mathematics | 9, 58 |
Cohen G.L. — A Course in Modern Analysis and Its Applications | 46 |
Rektorys K. — Survey of Applicable Mathematics.Volume 2. | I 344 |
Courant R., Robbins H. — What Is Mathematics?: An Elementary Approach to Ideas and Methods | 479—480 |
Gullberg J. — Mathematics: from the birth of numbers | 264 |
Courant R. — Differential and Integral Calculus, Vol. 1 | 368, 381—382 |
Akenine-Möller T. — Real-Time Rendering | 422 |
Murray D.A. — A first course in infinitesimal calculus | 304 |
Stein S. — Strength In Numbers: Discovering the Joy and Power of Mathematics in Everyday Life | 141 |
Cheney W. — Analysis for Applied Mathematics | 18 |
D'Angelo J.P., West D.B. — Mathematical thinking: problem-solving and proofs | 282 |
Stein S. — Strength In Numbers: Discovering the Joy and Power of Mathematics in Everyday Life | 141 |
Apostol T. — Mathematical Analysis, Second Edition | 186 |
Honsberger R. — Mathematical Gems | 98, 102 |
Truss J.K. — Foundations of Mathematical Analysis | 127, 183 |
Truss J. — Foundations of mathematical analysis | 127, 183 |
J. K. Truss — Foundations of mathematical analysis MCet | 127, 183 |
Sondheimer E., Rogerson A. — Numbers and Infinity: A Historical Account of Mathematical Concepts | 128 |