|
|
Результат поиска |
Поиск книг, содержащих: Galois, Evariste
Книга | Страницы для поиска | Ito K. — Encyclopedic Dictionary of Mathematics. Vol. 2 | 883.C 137 149.M 151.D 171.*, r 172.A, B, G, H 190.Q 200.N 267 | Grimaldi R.P. — Discrete and combinatorial mathematics. An introduction | 731, 830, 831, 851, 871, 872 | Rockett A.M., Szusz P. — Continued Fractions | 45 | Dodge C.W. — Sets, logic & numbers | 104 | Pesic P. — Abel's Proof: An Essay on the Sources and Meaning of Mathematical Unsolvability | 102—109, 190n—191n | Dodge C.W. — Foundations of algebra and analysis | 104 | Lim Ch., Nebus J. — Vorticity, Statistical Mechanics, and Monte Carlo Simulation | 89 | Ewald W. — From Kant to Hilbert, Vol.2 | 450, 568, 570, 754, 762, 787, 843, 1098, 1108, 1110, 1112 | Ewald W. — From Kant to Hilbert, Vol.1 | 450, 568, 570 | Sagan H. — Advanced Calculus of Real-Valued Functions of a Real Variable and Vector-Valued Functions of a Vector Variable | 132 | Devlin K.J. — Language of Mathematics: Making the Invisible Visible | 192, 196—199 | Lozansky E., Rousseau C. — Winning Solutions | 92 | Aczel A.D. — Descartes' Secret Notebook: A True Tale of Mathematics, Mysticism, and the Quest to Understand the Universe | 165 | Wicker S.B., Kim S. — Fundamentals of Codes, Graphs, and Iterative Decoding | 21 | Kline M. — Mathematical Thought from Ancient to Modern Times, Vol. 1 | 633, 752, 1024, 1137, 1146 | Pickover C.A. — Wonders of Numbers: Adventures in Mathematics, Mind, and Meaning | 80—81 | Borwein J., Bailey D. — Mathematics by Experiment: Plausible Reasoning in the 21st Century | 172 | Mumford D., Wright D., Series C. — Indra's Pearls: The Vision of Felix Klein | 20 | Stewart I., Tall D. — Algebraic Number Theory and Fermat's Last Theorem | 263 | Knuth D.E. — The art of computer programming (vol. 2 Seminumerical Algorithms) | 449, 457 | Kline M. — Mathematical Thought from Ancient to Modern Times, Vol. 3 | 653, 752, 1024, 1137, 1146 | Lerner K.L., Lerner B.W. — The gale encyclopedia of science (Vol. 6) | 3:1884 | National Council of Teachers of Mathematics — Historical Topics for the Mathematics Classroom Thirty-First Yearbook | 246, 251, 255, 256, 279, 311, 466 | Kline M. — Mathematical Thought from Ancient to Modern Times, Vol. 2 | 653, 752, 1024, 1137, 1146 | von zur Gathen J., Gerhard J. — Modern computer algebra | 187, 352, 393, 396, 688, 691, 692, 707 | Kasner E., Newman J. — Mathematics and the Imagination | 71 | Coxeter H.S.M. — Regular Polytopes | 55 | Alperin J.L., Bell R.B. — Groups and Representations, Vol. 0 | 101 | Dewdney A.K. — Beyond reason. 8 great problems that reveal the limits of science | 132 | Faith C. — Rings and Things and a Fine Array of Twentieth Century Associative Algebra | 256 | Trefethen L.N., Bau D. — Numerical Linear Algebra | 192, 324, 326 | Rosenfeld B.A. (Author), Shenitzer A. (Translator), Grant H. (Assistant) — A history of non-Euclidean geometry: evolution of the concept of a geometric space | 328—333, 348, 352, 400—401, 420, 424 | Coxeter H. — Regular polytopes | 55 | Katz V.J. — A History of Mathematics: An Introduction | 651, 667—669, 676—677, 694 | Ewald W.B. — From Kant to Hilbert: A source book in the foundations of mathematics. Volume 2 | 450, 568, 570, 754, 762, 787, 843, 1098, 1108, 1110, 1112 | Bell E.T. — Men of mathematics. Volume 2 | 1, 179, 180, 182, 296, 342, 398—415, 418, 420, 450, 482, 495, 496, 525, 526, 572, 591 | Derbyshire J. — Prime Obsession: Bernhard Riemann and the greatest unsolved problem in mathematics | 369 | Zeidler E. — Oxford User's Guide to Mathematics | 599, 675, 681, 1191 | Polya G. — Mathematical Discovery: On Understanding, Learning and Teaching Problem Solving Combined Edition | 2 88 | Grimaldi R.P., Rothman D.J. — Discrete and Combinatorial Mathematics: An Applied Introduction | 707, 794, 795, 813, 830, 831 | Hadlock C.R. — Field theory and its classical problems | 5, 177, 178 | Ifrah G., Bellos D. — The Universal History of Numbers: From Prehistory to the Invention of the Computer | 596, 598 | Kline M. — Mathematics for the Nonmathematician | 27, 120 | Stein S. — Strength In Numbers: Discovering the Joy and Power of Mathematics in Everyday Life | 36, 41 | Muir J. — Of Men and Numbers: The Story of the Great Mathematicians | 202—216 | Ewald W.B. — From Kant to Hilbert: A source book in the foundations of mathematics. Volume 1 | 450, 568, 570 | Wilson R. — Mathematical conversations: selections from The mathematical intelligencer | 128, 425, 471—472 | Yaglom A.M., Yaglom I.M. — Probability and Information | 380(fn) | Grimaldi R.P. — Student Solutions Manual for Discrete and Combinatorial Mathematics | 707, 794, 795, 813, 830, 831 | Stein S. — Strength In Numbers: Discovering the Joy and Power of Mathematics in Everyday Life | 36, 41 | Odifreddi P., Sangalli A., Dyson F. — The Mathematical Century: The 30 Greatest Problems of the Last 100 Years | 35, 72—73, 76 | Kline M. — Mathematical thought from ancient to modern times | 633, 752, 1024, 1137, 1146, | Brezinski C. — History of Continued Fractions and Padé Approximants | 160, 227, 377, 464 | Sondheimer E., Rogerson A. — Numbers and Infinity: A Historical Account of Mathematical Concepts | 63 |
|
|