| Êíèãà | Ñòðàíèöû äëÿ ïîèñêà |
| Guillemin V., Pollack A. — Differential topology | 159 |
| Berline N., Getzler E., Vergne M. — Heat Kernels and Dirac Operators | 103 |
| Kassel C. — Quantum Groups | 37, 435 |
| Dummit D.S., Foote R.M. — Abstract algebra | 446 |
| Lang S. — Algebra | 733 |
| Berger M. — A Panoramic View of Riemannian Geometry | 184 |
| Matsumura H. — Commutative ring theory | 169, 286 |
| Miller E., Sturmfels B. — Combinatorial Commutative Algebra | 106 |
| Eisenbud D. — Commutative algebra with a view toward algebraic geometry | 432, 565, 569 |
| Goldberg S.I. — Curvature and homology | 12—14, 44—45 |
| Hicks N. — Notes on differential geometry | 51 |
| Pareigis B. — Categories and functors | 148 |
| Jacobson N. — Structure and Representations of Jordan Algebras | 74 |
| Fulton W., Harris J. — Representation Theory: A First Course | 475 |
| Ward R.S., Wells R.O. — Twistor geometry and field theory | 26, 79, 161 |
| Baker A. — Transcendental number theory | 81—82 |
| Kriegl A., Michor P.W. — The Convenient Setting of Global Analysis | 57 |
| Behnke H., Bachmann F., Fladt K. — Fundamentals of Mathematics, Volume II: Geometry | 294 |
| Gracia-Bondia J.M., Varilly J.C., Figueroa H. — Elements of Noncommutative Geometry | 172, 184 |
| Sepanski R.M. — Compact Lie Groups | 14 |
| Hazewinkel M. (ed.) — Handbook of Algebra, Volume 4 | 44 |
| Street R., Murray M. (Ed), Broadbridge Ph. (Ed) — Quantum Groups: A Path to Current Algebra | 31 |
| Ash R.B. — Abstract algebra: the basic graduate year | 8.8 |
| Eisenbud D. — Computations in Algebraic Geometry with Macaulay 2 | 139, 215 |
| Bryant R.L., Chern S.S., Gardner R.B. — Exterior differential systems | 6 |
| Hogben L. — Handbook of Linear Algebra | 70—2 |
| McCleary J. — A user's guide to spectral sequences | 20, 124 |
| Hatcher A. — Algebraic Topology | 217, 284 |
| Lam T.Y. — A first course in noncommutative ring theory | 13, 60, 297 |
| Varadarajan V.S. — Lie Groups, Lie Algebras, and Their Representations | 166 |
| Loday J.-L. — Cyclic Homology | Application A.l |
| Surowski D. — Workbook in higher algebra | 175 |
| Hertrich-Jeromin U. — Introduction to Mobius Differential Geometry | 277, 279ff |
| Boffi G., Buchsbaum D. — Threading Homology through Algebra: Selected Patterns | 30 |
| Boothby W.M. — An introduction to differentiable manifolds and riemannian geometry | 211 |
| Akivis M., Goldberg V. — Differential Geometry of Varieties with Degenerate Gauss Maps | 10 |
| Chari V., Pressley A. — A Guide to Quantum Groups | 107—108 |
| Lounesto P., Hitchin N.J. (Ed), Cassels J.W. (Ed) — Clifford Algebras and Spinors | 40 |
| Chevalley C., Cartier P. — Algebraic Theory of Spinors and Clifford Algebras: Collected Works of Claude Chevalley. Volume 2 | 37 |
| Bamberg P.G. — A Course in Mathematics for Students of Physics, Vol. 2 | 535—9 |
| Heusler M., Goddard P. — Black Hole Uniqueness Theorems | 2 |
| Wilson J.S. — Profinite groups | 227 |
| Liu Q., Erne R. — Algebraic Geometry and Arithmetic Curves | 236 |
| Szekeres P. — A Course in Modern Mathematical Physics: Groups, Hilbert Space and Differential Geometry | 164, 209 |
| Morita S. — Geometry of differential forms | 58, 63 |
| Singer I.M., Thorpe J.A. — Lecture Notes on Elementary Topology and Geometry | 106—107 |
| Mukhi S., Mukunda N. — Introduction to Topology, Differential Geometry and Group Theory for Physicists | 38, 65 |
| Morita Sh. — Geometry of Differential Forms | 58, 63 |
| Yam T.Y. — Lectures on Modules and Rings | 15, 175 |
| Dubrovin B.A., Fomenko A.T., Novikov S.P. — Modern Geometry - Methods and Applications. Part 1. The Geometry of Surfaces, Transformation Groups and Fields | 167 |
| Kirillov A.A. — Elements of the Theory of Representations | 34 |
| Sternberg Sh. — Lectures on Differential Geometry | 14. 15 |
| Bollobás B. — Combinatorics: Set Systems, Hypergraphs, Families of Vectors and Combinatorial Probability | 117 |
| Swan F.G. — Algebraic K-Theory | 147 |
| Berger M., Cole M. (translator) — Geometry I (Universitext) | 4.3.3.1, 8.11.1 (see also “Alternating bilinear form”) |
| Silvester J.R. — Introduction to Algebraic K-Theory | 45 |
| Balian R. — From Microphysics to Macrophysics: Methods and Applications of Statistical Physics (vol. 1) | 261—263 |
| Drensky V., Formanek E. — Polynomial Identity Rings | 7, 140, 143, 147 |
| Tamura I. — Topology of lie groups, I and II | 139 |
| Hazewinkel M. — Handbook of Algebra (part 2) | 584 |
| Berezin F.A., Shubin M.A. — The Schroedinger equation | 488 |
| Straumann N. — General relativity and relativistic astrophysics | 28 |
| Mac Lane S., Birkhoff G.D. — Algebra | 543 |
| Boothby W.M. — An Introduction to Differentiable Manifolds and Riemannian Geometry | 211 |
| Nash C. — Differential Topology and Quantum Field Theory | 94 |
| Dold A. — Lectures on Algebraic Topology | 231 |
| Baez J.C., Muniain J.P. — Gauge theories, knots, and gravity | 56, 59 |
| Alekseevskij D.V., Vinogradov A.M., Lychagin V.V. — Geometry I: Basic Ideas and Concepts of Differential Geometry | 67 |
| Yu Y. — Index Theorem and the Heat Equation Method | 80 |
| Morita S. — Geometry of Differential Forms | 58, 63 |
| Hermann R. — Differential geometry and the calculus of variations | 113, 177, 178 |
| Choquet-Bruhat Y., DeWitt-Morette C., Dillard-Bleick M. — Analysis, manifolds and physics. Part I. | 196 |
| Cohn P.M. — Lie Groups | 80 |
| Spanier E.H. — Algebraic Topology | 264 |
| Chevalley C. — The Construction and Study of Certain Important Algebras | 35 |
| Marathe K.B., Martucci G. — The mathematical foundations of gauge theories | 13 |
| Porteous I.R. — Clifford Algebras and the Classical Groups | 138 |
| Wen-tsun W. — Rational Homotopy Type: A Constructive Study Via the Theory of the I*-Measure | 22 |
| Lounesto P. — Clifford algebras and spinors | 40 |
| Loomis L.H., Sternberg S. — Advanced calculus | 316ff |
| Tuynman G.M. — Supermanifolds and Supergroups: Basic Theory | 27 |
| Lane S.M. — Mathematics, form and function | 211, 212 |
| Iwasaki Katsunon, Kimura H., Shimomura S. — From Gauss to Painleve: A Modern Theory of Special Functions | 15 |
| Frankel T. — The geometry of physics: an introduction | 68 |
| Mcdonald B.R. — Linear algebra over commutative rings | 366 |
| Fritzsche K., Grauert H. — From Holomorphic Functions To Complex Manifolds | 298 |
| Greub W., Halperin S., Vanstone R. — Connections, curvature, and cohomology. Volume 1 | 5, 57 |
| Frankel T. — The geometry of physics: An introduction | 68 |
| Maclane S. — Homology | 174, 179, 183 |
| Zorich V.A., Cooke R. — Mathematical analysis II | 319 |
| Zorich V. — Mathematical Analysis | 319 |
| Golan J.S. — The Linear Algebra a Beginning Graduate Student Ought to Know (Texts in the Mathematical Sciences) | 416 |
| Choquet-Bruhat Y., Dewitt-Morette C. — Analysis, manifolds and physics | 196 |
| Neusel M.D. — Invariant Theory of Finite Groups | 116 |
| Nash C., Sen S. — Topology and geometry for physicists | 42 |
| Morita S. — Geometry of Differential Forms (Translations of Mathematical Monographs, Vol. 201) | 58, 63 |