Êíèãà | Ñòðàíèöû äëÿ ïîèñêà |
Guillemin V., Pollack A. — Differential topology | 159 |
Berline N., Getzler E., Vergne M. — Heat Kernels and Dirac Operators | 103 |
Kassel C. — Quantum Groups | 37, 435 |
Dummit D.S., Foote R.M. — Abstract algebra | 446 |
Lang S. — Algebra | 733 |
Berger M. — A Panoramic View of Riemannian Geometry | 184 |
Matsumura H. — Commutative ring theory | 169, 286 |
Miller E., Sturmfels B. — Combinatorial Commutative Algebra | 106 |
Eisenbud D. — Commutative algebra with a view toward algebraic geometry | 432, 565, 569 |
Goldberg S.I. — Curvature and homology | 12—14, 44—45 |
Hicks N. — Notes on differential geometry | 51 |
Pareigis B. — Categories and functors | 148 |
Jacobson N. — Structure and Representations of Jordan Algebras | 74 |
Fulton W., Harris J. — Representation Theory: A First Course | 475 |
Ward R.S., Wells R.O. — Twistor geometry and field theory | 26, 79, 161 |
Baker A. — Transcendental number theory | 81—82 |
Kriegl A., Michor P.W. — The Convenient Setting of Global Analysis | 57 |
Behnke H., Bachmann F., Fladt K. — Fundamentals of Mathematics, Volume II: Geometry | 294 |
Gracia-Bondia J.M., Varilly J.C., Figueroa H. — Elements of Noncommutative Geometry | 172, 184 |
Sepanski R.M. — Compact Lie Groups | 14 |
Hazewinkel M. (ed.) — Handbook of Algebra, Volume 4 | 44 |
Street R., Murray M. (Ed), Broadbridge Ph. (Ed) — Quantum Groups: A Path to Current Algebra | 31 |
Ash R.B. — Abstract algebra: the basic graduate year | 8.8 |
Eisenbud D. — Computations in Algebraic Geometry with Macaulay 2 | 139, 215 |
Bryant R.L., Chern S.S., Gardner R.B. — Exterior differential systems | 6 |
Hogben L. — Handbook of Linear Algebra | 70—2 |
McCleary J. — A user's guide to spectral sequences | 20, 124 |
Hatcher A. — Algebraic Topology | 217, 284 |
Lam T.Y. — A first course in noncommutative ring theory | 13, 60, 297 |
Varadarajan V.S. — Lie Groups, Lie Algebras, and Their Representations | 166 |
Loday J.-L. — Cyclic Homology | Application A.l |
Surowski D. — Workbook in higher algebra | 175 |
Hertrich-Jeromin U. — Introduction to Mobius Differential Geometry | 277, 279ff |
Boffi G., Buchsbaum D. — Threading Homology through Algebra: Selected Patterns | 30 |
Boothby W.M. — An introduction to differentiable manifolds and riemannian geometry | 211 |
Akivis M., Goldberg V. — Differential Geometry of Varieties with Degenerate Gauss Maps | 10 |
Chari V., Pressley A. — A Guide to Quantum Groups | 107—108 |
Lounesto P., Hitchin N.J. (Ed), Cassels J.W. (Ed) — Clifford Algebras and Spinors | 40 |
Chevalley C., Cartier P. — Algebraic Theory of Spinors and Clifford Algebras: Collected Works of Claude Chevalley. Volume 2 | 37 |
Bamberg P.G. — A Course in Mathematics for Students of Physics, Vol. 2 | 535—9 |
Heusler M., Goddard P. — Black Hole Uniqueness Theorems | 2 |
Wilson J.S. — Profinite groups | 227 |
Liu Q., Erne R. — Algebraic Geometry and Arithmetic Curves | 236 |
Szekeres P. — A Course in Modern Mathematical Physics: Groups, Hilbert Space and Differential Geometry | 164, 209 |
Morita S. — Geometry of differential forms | 58, 63 |
Singer I.M., Thorpe J.A. — Lecture Notes on Elementary Topology and Geometry | 106—107 |
Mukhi S., Mukunda N. — Introduction to Topology, Differential Geometry and Group Theory for Physicists | 38, 65 |
Morita Sh. — Geometry of Differential Forms | 58, 63 |
Yam T.Y. — Lectures on Modules and Rings | 15, 175 |
Dubrovin B.A., Fomenko A.T., Novikov S.P. — Modern Geometry - Methods and Applications. Part 1. The Geometry of Surfaces, Transformation Groups and Fields | 167 |
Kirillov A.A. — Elements of the Theory of Representations | 34 |
Sternberg Sh. — Lectures on Differential Geometry | 14. 15 |
Bollobás B. — Combinatorics: Set Systems, Hypergraphs, Families of Vectors and Combinatorial Probability | 117 |
Swan F.G. — Algebraic K-Theory | 147 |
Berger M., Cole M. (translator) — Geometry I (Universitext) | 4.3.3.1, 8.11.1 (see also “Alternating bilinear form”) |
Silvester J.R. — Introduction to Algebraic K-Theory | 45 |
Balian R. — From Microphysics to Macrophysics: Methods and Applications of Statistical Physics (vol. 1) | 261—263 |
Drensky V., Formanek E. — Polynomial Identity Rings | 7, 140, 143, 147 |
Tamura I. — Topology of lie groups, I and II | 139 |
Hazewinkel M. — Handbook of Algebra (part 2) | 584 |
Berezin F.A., Shubin M.A. — The Schroedinger equation | 488 |
Straumann N. — General relativity and relativistic astrophysics | 28 |
Mac Lane S., Birkhoff G.D. — Algebra | 543 |
Boothby W.M. — An Introduction to Differentiable Manifolds and Riemannian Geometry | 211 |
Nash C. — Differential Topology and Quantum Field Theory | 94 |
Dold A. — Lectures on Algebraic Topology | 231 |
Baez J.C., Muniain J.P. — Gauge theories, knots, and gravity | 56, 59 |
Alekseevskij D.V., Vinogradov A.M., Lychagin V.V. — Geometry I: Basic Ideas and Concepts of Differential Geometry | 67 |
Yu Y. — Index Theorem and the Heat Equation Method | 80 |
Morita S. — Geometry of Differential Forms | 58, 63 |
Hermann R. — Differential geometry and the calculus of variations | 113, 177, 178 |
Choquet-Bruhat Y., DeWitt-Morette C., Dillard-Bleick M. — Analysis, manifolds and physics. Part I. | 196 |
Cohn P.M. — Lie Groups | 80 |
Spanier E.H. — Algebraic Topology | 264 |
Chevalley C. — The Construction and Study of Certain Important Algebras | 35 |
Marathe K.B., Martucci G. — The mathematical foundations of gauge theories | 13 |
Porteous I.R. — Clifford Algebras and the Classical Groups | 138 |
Wen-tsun W. — Rational Homotopy Type: A Constructive Study Via the Theory of the I*-Measure | 22 |
Lounesto P. — Clifford algebras and spinors | 40 |
Loomis L.H., Sternberg S. — Advanced calculus | 316ff |
Tuynman G.M. — Supermanifolds and Supergroups: Basic Theory | 27 |
Lane S.M. — Mathematics, form and function | 211, 212 |
Iwasaki Katsunon, Kimura H., Shimomura S. — From Gauss to Painleve: A Modern Theory of Special Functions | 15 |
Frankel T. — The geometry of physics: an introduction | 68 |
Mcdonald B.R. — Linear algebra over commutative rings | 366 |
Fritzsche K., Grauert H. — From Holomorphic Functions To Complex Manifolds | 298 |
Greub W., Halperin S., Vanstone R. — Connections, curvature, and cohomology. Volume 1 | 5, 57 |
Frankel T. — The geometry of physics: An introduction | 68 |
Maclane S. — Homology | 174, 179, 183 |
Zorich V.A., Cooke R. — Mathematical analysis II | 319 |
Zorich V. — Mathematical Analysis | 319 |
Golan J.S. — The Linear Algebra a Beginning Graduate Student Ought to Know (Texts in the Mathematical Sciences) | 416 |
Choquet-Bruhat Y., Dewitt-Morette C. — Analysis, manifolds and physics | 196 |
Neusel M.D. — Invariant Theory of Finite Groups | 116 |
Nash C., Sen S. — Topology and geometry for physicists | 42 |
Morita S. — Geometry of Differential Forms (Translations of Mathematical Monographs, Vol. 201) | 58, 63 |