Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Loday J.-L. — Cyclic Homology
Loday J.-L. — Cyclic Homology

Читать книгу
бесплатно

Скачать книгу с нашего сайта нельзя

Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Cyclic Homology

Автор: Loday J.-L.

Язык: en

Рубрика: Математика/Алгебра/Гомология/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 1992

Количество страниц: 454

Добавлена в каталог: 06.05.2005

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
$S^1$-equivariant homology      7.2.1
A-decomposition      4.5 4.6
A-operation      4.5.4
Acyclic      10.4
Additive K-theory      remark after 10.2.4
Adjoint representation      10.4.1
Adjunction formula      1.5.10
Alexander — Whitney      1.6.9
Almost symmetric algebra      3.3.8
Amitsur — Levitzki      9.3.7 10.3.10
Andre — Quillen homology      3.5 Application
Antisymmetrization map      1.3.4 1.3.12
Assembly map 12.3.9, 12.4.1      
Bar complex, bar resolution      1.1.11
Bass trace conjecture      8.5.2
Beilinson — Loday symbol,      E.11.2.3
Bicomplex      1.0.11 Application
Bicomplex of truncated de Rham complexes      2.3.6
Bimodule      110
Birelative cyclic homology      E.2.1.2
Birelative Hochschild homology      E.l.1.6
Bisimplicial objects      Application B.15
Bivariant      5.5
Borel construction      7.2.1
Boundary map      1.0.1 1.0.5
Bousfield — Kan construction      Application B. 13
Braid group      E.6.3.1
Campbell — Hausdorff formula      E.4.5.5
Cartan — Milnor — Moore theorem      Application A.10
Cayley — Hamilton      9.3
Character of a cycle      2.4.7
Chern character      Chap. 8 11.4 11.5
Chern — Connes pairing      8.4.13
Chevalley — Eilenberg (CE-) complex (or map)      1.3.4 3.3.1 10.1.3
Classifying space      Application B. 12
Coalgebra      Application A.2
Commutator      1.1.6 11.1.1
Comodule structure      2.5.17
Complex, chain-complex      1.0.1
Composition product      5.5.5
Concatenation      Application A.l
Conjugation      4.1.1
Connection      8.1.1
Connes boundary map      2.1.7 2.5.10
Connes complex      2.1.4 2.5.9
Connes cyclic category 6.1      
Connes exact sequence      2.2.1 2.5.8
Cosimplicial      Application B.4
Cot race map      1.5.6
Crossed module      E.10.1.3 Application
Crossed simplicial group      6.3.0
Cyclic bar complex      1.1.3
Cyclic bar construction      7.3.10
Cyclic bicomplex      2.1.2 2.5.5
Cyclic category      6.1.1
Cyclic cohomology      2.4
Cyclic descent      4.6.1
Cyclic geometric realization      7.2.2
Cyclic homology      2.1.3 2.5.6
Cyclic module      2.5
Cyclic object      6.1.2
Cyclic operator      2.1.0 2.5.1 6.1.2
Cyclic set, cyclic space      6.1.2 7.1
Cyclic shuffle      4.3.2
Cyclotomic trace map      12.4.2
De Rham complex, de Rham cohomology      2.3.1
Deconcatenation      Application A.6
Deligne complex      2.3.6
Dennis trace map      8.4.3
Dennis-Stein symbol      E.11.1.1
Derivation      1.3.1 1.5.2 4.1.4
Descent      4.5.5
Differential forms      1.3 2.3
Differential graded algebra      5.3.1 Application
Differential map      1.0.1
Dihedral group, dihedral homology      5.2.5 6.3 10.5.4
Dual numbers      1.1.6 E.2.2.3 E.4.2.3
Eilenberg — Zilber      1.6.12
Elementary matrix      1.1.7 9.2.10 11.1.4
Entire cyclic cohomology      5.6.8
Epicyclic category      E.6.4.4
Etale      3.4.1 Application
Eulerian element (number, idempotent)      4.5
Excision      1.4.9 2.2.17
Exterior algebra      Application A.l
Extra degeneracy      1.1.12 2.1.7 2.5.7 6.1.11—13 10.6.12
Foliation      5.6.6 12.1.1
Fredholm module      12.2.4
Free model      5.3.7
Fusion map      8.4.1
Geometric realization      Application B.7/B.8
Goldbillon — Vey invariant      12.1.3
Graded exterior product      5.4.3 Application
Grothendieck group      8.2
Group algebra      7.4 A.4
Gysin sequence      Application D.6
H-space      ApplicationA.ll
Harrison homology      4.2.10
Hattori — Stallings trace map      8.5.1
Higher algebraic K-groups      11.2.4
Higher signature 12.3.5      
Higher symbol      E.ll.2.4
HKR-theorem      3.4.4 5.4.5
Hochschild cohomology      1.5
Hochschild homology (boundary, complex)      1.1
Homology of a discrete group      Application D.2
Homology of a Lie algebra      10.1.4
Homology of a simplicial module 1.0.7, 1.6.2, Application B.5      
Homology of a small category Application C.10      
Homotopy      1.0.2
Homotopy colimit      7.2.4 Application
Hopf algebra      E.7.4.4 Application
Hyperoctahedral      6.3.3 9.5.1 10.5
Idempotent conjecture      8.5.6
Indecomposable part Application A.3      
Index formula 12.2      
Invariant theory      Chapter 9
Involution      5.2
Jacobi identity      10.1.1
K-theoretic Novikov conjecture      12.4
K-theory      Chapter 11 8.2
Kahler differentials      1.1.9 1.3
Kan complex (fibration)      Application B.9
Koszul complex 3.4.6      
Koszul sign      1.0.15
Kronecker product      1.5.9 2.4.8
Kunneth      1.0.16 4.3.11
L-polynomial      12.3.3
Leibniz algebra (relation)      10.6.1
Leray — Serre spectral sequence      Application D.5
Levi — Civita connection      8.1.8
Lie algebra      3.3.0 10.1.1
localization      1.1.17 2.1.16
Mac Lane isomorphism      7.4.2
Malcev's theory      11.3.13
Milnor .K-group      11.1.16
Milnor cyclic homology group 10.3.3      
Milnor — Hochschild homology group      10.6.19
Mixed complex      2.5.13
Mixed discriminant      E.9.3.2
Morita invariance 1.2, 2.2.9      
Negative cyclic homology      5.1
Nerve      Application B.12
Nilpotent ideal      11.3
Non-commutative de Rham homology      2.6.6
Non-commutative differential forms      2.6
Non-commutative homology of a Lie algebra      10.6.4
Non-commutative torus      5.6.5
Nonunital algebra      1.4 2.2.15
Norm map (operator)      2.1.0 2.5.5 Application
Normalized Hochschild complex      1.1.14
Novikov conjecture      12.3 12.4
Obstruction to stability      10.3.4 10.5.10 10.5.11 10.6.20 11.2.18
Orthogonal group (matrix)      9.5 10.5
Periodic cyclic homology      5.1
Periodicity exact sequence (map)      2.2.1 2.2.8
Pfaffian      9.5.13
Plus-construction      11.2.2
Poincare — Birkhoff — Witt theorem      3.3.4
Poisson algebra (bracket)      3.3.4 E.2.5.4
Pre-simplicial      10.6
Primitive part      Application A.3
Quasi-isomorphism      1.0.2
Quaternionic      5.2 6.3.4
Reduced C*-algebra      5.6.7
Reduced cyclic homology      2.2.13
Reduced Deligne complex      2.3.6
Reduced Hochschild complex      1.4.2
Regular sequence      3.4.1
Regulator map      11.5.10
Relative algebraic K-theory      11.2.19
Relative cyclic homology      2.1.15
Relative Hochschild homology      1.1.16
Residue homomorphism      1.5.9
Resolution      1.0.4
Schatten ideal      12.2.5
Selberg principle      E.8.5.1
Separable algebras      1.2.12
Shapiro’s Lemma      Application C.9/C.12
Shuffle      1.6.10 4.2 Application
Signed Eulerian number      E.4.6.3
simplex      Application B.6
Simplicial      Chap. 6 Chap. Application
Simplicial homology      Application B.10
Simplicial modules 1.6, Application B.5      
Skew-dihedral      5.2.7
Smooth algebra      3.4.1 Application
Spectral sequence      Application D
Stability for the homology      10.3.2 10.5.9 10.6.18 11.2.18
Stabilization      10.2.2 11.2.18
Standard resolution      Application C.3
Symmetric algebra      3.2.1 Application
Symmetric group      Notation and terminology
Symplectiv group (matrix)      9.5 10.5.3
Telescope      Application B.13
Tensor algebra      2.3 3.1 Application
Tensor coalgebra      Application A.6
Tensor module      Application A.l
Topological algebra      5.6
Topological tensor product      5.6.2
Total complex      1.0.11 5.1.2
Trace map      1.1.7 1.2 2.2.8 9.2
Truncated de Rham complex      2.3.6
Truncated polynomial ring      E.4.1.8 5.4.14
Twisted Nerve      7.3.3
Twisting map      4.4.2 Application
Universal central extension      E.10.1.2 11.1.11
Universal enveloping algebra      3.3.1 10.1.2
Volodin space      11.2.13 11.3.3
Weight      5.3.1 5.4.2
Young diagram      9.4.2
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2017
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте