Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
Ìåõìàòÿíàì
square Ïåðâûé êóðñ

square Âòîðîé êóðñ

square Òðåòèé êóðñ

square ×åòâåðòûé êóðñ

square Ïÿòûé êóðñ
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
Êðàñîòà
blank
blank
Ðåçóëüòàò ïîèñêà

Ïîèñê êíèã, ñîäåðæàùèõ: Basis, orthonormal



ÊíèãàÑòðàíèöû äëÿ ïîèñêà
Hunter J.K., Nachtergaele B. — Applied Analysis133
Evans L.C. — Partial Differential Equations637
Allen R.L., Mills D.W. — Signal analysis. Time, frequency, scale and structure211—215
Golub G.H., van Loan C.F. — Matrix Computations69
Hoffman K., Kunze R. — Linear algebra281
Iohvidov I.S. — Hankel and Toeplitz Matrices and Forms21
Meyer C.D. — Matrix analysis and applied linear algebra355
Roberts A.W., Varberg D.E. — Convex Functions53
Hewitt E., Ross K.A. — Abstract Harmonic Analysis (Vol. 1)465
Hewitt E., Ross K.A. — Abstract Harmonic Analysis (Vol. 2)465 I
Millman R.S., Parker G.D. — Elements of Differential Geometry3
Behnke H., Bachmann F., Fladt K. — Fundamentals of Mathematics, Volume II: Geometry348, 353, 415
Bogachev V.I. — Measure Theory Vol.1258
Halmos P.R. — Hilbert Space Problem Book7
Young R.M. — An Introduction to Non-Harmonic Fourier Series, Revised Editionsee “Orthonormal basis”
Treil S. — Linear Algebra Done Wrong118
O'Donnel P. — Introduction to 2-Spinors in General Relativity3, 105, 146
Weickert J. — Visualization and Processing of Tensor Fields: Proceedings of the Dagstuhl Workshop6
Lounesto P., Hitchin N.J. (Ed), Cassels J.W. (Ed) — Clifford Algebras and Spinors7
Duistermaat J.J., Kolk J.A.C. — Multidimensional Real Analysis II: Integration3
Duistermaat J.J., Kolk J.A.C. — Multidimensional Real Analysis I(Cambridge Studies in Advanced Mathematics #86), Vol. 13
Atkinson K.E., Han W. — Theoretical Numerical Analysis: A Functional Analysis Framework28
Stone C.J.D. — Course in Probability and Statistics461
James G.D. — The Representation Theory of the Symmetric Groups115
Rall D. — Computational Solution to Nonlinear Operator Equations26
Antman S.S. — Nonlinear Problems of Elasticity372
Ito K. — Encyclopedic Dictionary of Mathematics197.C
Shiryaev A.N. — Probability267
Stakgold I. — Green's Functions and Boundary Value Problems277, 281—290, 297
Bogachev V.I. — Measure Theory Vol.2I: 258
Kolmogorov A.N., Fomin S.V. — Introductory real analysis143
Peleg Y., Pnini R., Zaarur E. — Schaum's outline of theory and problems of quantum mechanics99
Young R.M. — An Introduction to Nonharmonic Fourier Seriessee “Orthonormal basis”
Fabian M.J., Hajek P., Pelant J. — Functional Analysis and Infinite-Dimensional Geometry18, 20, 222
Miller W. — Symmetry Groups and Their Applications18, 66, 412
Petrou M., Sevilla P.G. — Image Processing: Dealing with Texture465—472, 483
Olver P.J., Shakiban C. — Applied linear. algebra218, 219, 223, 228, 230, 236, 240, 257, 280, 348, 413, 418, 428, 435, 641
Simmons G.F. — Introduction to topology and modern analysis293
Aschbacher M. — Finite Group Theory79
Sachs R.K., Wu H. — General relativity for mathematicians2
Carl D. Meyer — Matrix Analysis and Applied Linear Algebra Book and Solutions Manual355
Prilepko A.I., Orlovsky D.G., Vasin I.A. — Methods for Solving Inverse Problems in Mathematical Physics303, 508
Harville D.A. — Matrix Algebra: Exercises and Solutions22, 24, 31
Nouredine Z. — Quantum Mechanics: Concepts and Applications82, 103, 117
Stanley R.P. — Enumerative Combinatorics: Volume 2354
Kreyszig E. — Introductory functional analysis with applications168
Hefferon J. — Linear algebra258
Aliprantis C. — Principles of real analysis298
Przeworska-Rolewicz D., Rolewicz S. — Equations in linear spaces175
Choquet-Bruhat Y., DeWitt-Morette C., Dillard-Bleick M. — Analysis, manifolds and physics. Part I.287
Hille E. — Methods in classical and functional analysis3, 12
Audin M. — Geometry52
Audin M. — Geometry52
Stakgold I. — Green's functions and boundary value problems277, 281—290, 297
Lounesto P. — Clifford algebras and spinors7
Hsiung C.-C. — A first course in differential geometry28
Tuynman G.M. — Supermanifolds and Supergroups: Basic Theory192
Vilenkin N.Ja., Klimyk A.U. — Representation of Lie Groups and Special Functions: Volume 1: Simplest Lie Groups, Special Functions and Integral Transforms26
Schutz B.F. — A first course in general relativity144, 147, 315
Cohen G.L. — A Course in Modern Analysis and Its Applications295
Zeidler E. — Oxford User's Guide to Mathematics1103
Horn R.A. — Matrix Analysis16
Schott J.R. — Matrix Analysis for Statistics48—52
Hassani S. — Mathematical Methods: for Students of Physics and Related Fields186
Akenine-Möller T. — Real-Time Rendering720—721, 730
Radunovic D.P. — Wavelets: From Math to Practice10
Stakgold I. — Boundary value problems of mathematical physics123—124, 129
Choquet-Bruhat Y., Dewitt-Morette C. — Analysis, manifolds and physics287
Barbeau E.J. — Mathematical Fallacies, Flaws and Flimflam140
Postnikov M. — Lectures in Geometry. Semester I. Analytic Geometry.140
Jorgensen P.E.T. — Analysis and Probability: Wavelets, Signals, Fractalsxxxi, 13, 15, 16, 22, 26, 28, 29, 32, 36, 55, 56, 65, 71, 72, 74, 76, 77, 79, 99, 103—106, 130, 139, 140, 143, 144, 149, 150, 162, 163, 165, 166, 168, 177, 182, 184, 185, 189, 190, 192—194, 197, 198, 228, 229, 254, 255
blank
HR
@Mail.ru
© Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2024
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01!| Valid CSS! Î ïðîåêòå