|
|
Ðåçóëüòàò ïîèñêà |
Ïîèñê êíèã, ñîäåðæàùèõ: Cayley, Arthur
Êíèãà | Ñòðàíèöû äëÿ ïîèñêà | Apostol T.M. — Calculus (vol 1) | 446 | Ito K. — Encyclopedic Dictionary of Mathematics. Vol. 2 | 12.B 54 105.A 137 151.H 157.A 190.Q 226.G 251.I 267 269.F, J 285.A | Grimaldi R.P. — Discrete and combinatorial mathematics. An introduction | 428, 589, 598, 607, 650, 830, 831, A-13 | Higham N. — Accuracy and stability of numerical algorithms | 446 | Coxeter H.S.M. — Non-Euclidean Geometry | 13, 109, 122, 125, 126, 149, 157, 182, 196, 226, 266 | Pesic P. — Abel's Proof: An Essay on the Sources and Meaning of Mathematical Unsolvability | 112, 126, 136—138, 195n | Meyer C.D. — Matrix analysis and applied linear algebra | 80, 93, 158, 460 | Ewald W. — From Kant to Hilbert, Vol.2 | 7, 332, 363, 364, 368, 376, 423, 424, 443, 450, 510, 516, 517, 542—573, 957, 958, 1187, 1198 | Ewald W. — From Kant to Hilbert, Vol.1 | 7, 332, 363, 364, 368, 376, 423, 424, 443, 450, 510, 516, 517, 542—573 | Kline M. — Mathematical Thought from Ancient to Modern Times, Vol. 1 | 478, 768—769, 792, 796, 804—807, 812, 944, 1030, 1033, 1138—1139, 1142—1143, 1166 | Rockmore D. — Stalking the Riemann Hypothesis: The Quest to Find the Hidden Law of Prime Numbers | 169—170, 257 | Stillwell J. — Yearning for the Impossible: The Surprising Truths of Mathematics | 62, 144 | Borwein J., Bailey D., Girgensohn R. — Experimentation in Mathematics: Computational Paths to Discovery | 189 | Mumford D., Wright D., Series C. — Indra's Pearls: The Vision of Felix Klein | 105 | Kline M. — Mathematical Thought from Ancient to Modern Times, Vol. 3 | 478, 768—769, 792, 796, 804—807, 812, 944, 1030, 1033, 1138—1139, 1142—1143, 1166 | National Council of Teachers of Mathematics — Historical Topics for the Mathematics Classroom Thirty-First Yearbook | 160, 182, 251, 255, 258, 259, 282, 283, 311, 451 | Guy R.K. — Unsolved Problems in Number theory | E37 | Higham N.J. — Accuracy and Stability of Numerical Algorithms | 434 | Apostol T.M. — Calculus: One-Variable Calculus with an Introduction to Linear Algebra, Vol. 1 | 446 | Kline M. — Mathematical Thought from Ancient to Modern Times, Vol. 2 | 478, 768—769, 792, 796, 804—807, 812, 944, 1030, 1033, 1138—1139, 1142—1143, 1166 | von zur Gathen J., Gerhard J. — Modern computer algebra | 186, 703 | Knuth D.E. — The art of computer programming (Vol. 1. Fundamental algorithms) | 396, 405—406 | Kasner E., Newman J. — Mathematics and the Imagination | 118, 156, 186, 298 | Coxeter H.S.M. — Regular Polytopes | 14, 56, 115, 116, 141, 172, 309 | Knuth D.E. — The art of computer programming (vol. 3 Sorting and Searching) | 628, 653 | Conway J.H. — The Book of Numbers | 234 | Knuth D.E. — The art of computer programming (vol. 1 Fundàmental algorithms) | 396, 406—407, 586, 597 | Hellman H. — Great Feuds in Mathematics: Ten of the Liveliest Disputes Ever | 106 | Rosenfeld B.A. (Author), Shenitzer A. (Translator), Grant H. (Assistant) — A history of non-Euclidean geometry: evolution of the concept of a geometric space | 220, 233—236, 249—251, 296—297, 398 | Struik D.J. — A concise history of mathematics. Volume 2 | 203, 249, 256, 257, 260, 262, 267, 269, 271, 272, 281, 282, 286 | Carl D. Meyer — Matrix Analysis and Applied Linear Algebra Book and Solutions Manual | 80, 93, 158, 460 | Hancock H. — Elliptic Integrals | 6, 14, 16, 28, 65, 68, 73, 76 | Coxeter H. — Regular polytopes | 14, 56, 115, 116, 141, 172, 309 | Tietze H. — Famous Problems of Mathematics Solved and Unsolved | 227, 234 ff., 240, 242 | Kasner E., Newman J. — Mathematics and the imagination | 118, 156, 186, 298 | Katz V.J. — A History of Mathematics: An Introduction | 651, 672—674, 689—691, 789 | Farmer D.W. — Groups and symmetry: A guide to discovering mathematics | 67 | Cofman J. — Numbers and shapes revisited: More problems for young mathematicians | 112 | Gries D. — A Logical Approach to Discrete Math | 408, 409 | Ewald W.B. — From Kant to Hilbert: A source book in the foundations of mathematics. Volume 2 | 7, 332, 363, 364, 368, 376, 423, 424, 443, 450, 510, 516, 517, 542—573, 957, 958, 1187, 1198 | Bell E.T. — Men of mathematics. Volume 2 | 1, 2, 233ff., 297, 309, 394, 405, 416—447, 483, 494, 507, 523, 568, 589, 602, 603 | Greiner W. — Relativistic quantum mechanics. Wave equations | 415 | Apostol T.M. — Calculus (Volume 2): Multi-Variable Calculus and Linear Algebra with Applications | 202 | Derbyshire J. — Prime Obsession: Bernhard Riemann and the greatest unsolved problem in mathematics | 225, 226, 277 | Zeidler E. — Oxford User's Guide to Mathematics | 768 | Dorrie H. — 100 Great Problems of Elementary Mathematics: Their History and Solution | 105 | Grimaldi R.P., Rothman D.J. — Discrete and Combinatorial Mathematics: An Applied Introduction | 411, 565, 581, 622, 623, 794, 795, A-11 | Ifrah G., Bellos D. — The Universal History of Numbers: From Prehistory to the Invention of the Computer | 598 | Cofman J. — What to Solve? Problems and Suggestions for Young Mathematicians | 145, 235, 240 | Gossett E. — Discrete Math with Proof | 632 | Muir J. — Of Men and Numbers: The Story of the Great Mathematicians | 169 | Hubbard B. — The World According to Wavelets: The Story of a Mathematical Technique in the Making | 122 | Krantz S. — Mathematical apocrypha redux | 109, 246 | Ewald W.B. — From Kant to Hilbert: A source book in the foundations of mathematics. Volume 1 | 7, 332, 363, 364, 368, 376, 423, 424, 443, 450, 510, 516, 517, 542—573 | Wilson R. — Mathematical conversations: selections from The mathematical intelligencer | 142—145, 147, 282—283, 418—419, 421—422, 424—426 | Joyner D. — Adventures in group theory: Rubik's cube, Merlin's machine, and other mathematical toys | 20, 146 | Grimaldi R.P. — Student Solutions Manual for Discrete and Combinatorial Mathematics | 411, 565, 581, 622, 623, 794, 795, A-11 | Odifreddi P., Sangalli A., Dyson F. — The Mathematical Century: The 30 Greatest Problems of the Last 100 Years | 72 | Krantz S. — Mathematical Apocrypha Redux: More Stories and Anecdotes of Mathematicians and the Mathematical (Spectrum) (Spectrum) | 109, 246 | Jammer M. — Concepts of space: The history of theories of space in physics | 158 | Kline M. — Mathematical thought from ancient to modern times | 478, 768, 769, 792, 796, 804—807, 812, 944, 1030, 1033, 1138, 1139, 1142, 1143, 1166 | Brezinski C. — History of Continued Fractions and Padé Approximants | 83, 180, 256, 362, 463, 473 | Alexanderson G. — The harmony of the world: 75 years of Mathematics Magazine MPop | 5, 9, 85, 146, 148, 213, 216, 223, 224, 225, 226 | Wells D. G. — You are a mathematician: a wise and witty introduction to the joy of numbers | 144, 211, 232—233, 330, 363 | A. Slomson — An Introduction to Combinatorics | 117 | Knuth D.E. — Selected papers on discrete mathematics | 117—119, 209, 217, 219, 238, 254, 546, 563, 652, 789 | Sondheimer E., Rogerson A. — Numbers and Infinity: A Historical Account of Mathematical Concepts | 78, 80 | Hancock H. — Elliptic Integrals | 6, 14, 16, 28, 65, 68, 73, 76 | Hancock H. — Elliptic integrals | 6, 14, 16, 28, 65, 68, 73, 76 |
|
|