| Êíèãà | Ñòðàíèöû äëÿ ïîèñêà |
| Bartle R.G. — The Elements of Real Analysis | 226 |
| Rudin W. — Principles of Mathematical Analysis | 215 |
| Acheson David — From calculus to chaos | 94 |
| Latrve D.R., Kreider D.L., Proctor T.G. — Hp-48G/Gx Investigations in Mathematics | 59 |
| Mathews J.H., Fink K.D. — Numerical Methods Using MATLAB | 325 (#7), 517, 527, 538 |
| Barbeau E.J. — Polynomials: a problem book | 68—71 |
| Roberts A.W., Varberg D.E. — Convex Functions | 63 |
| Abell M.L., Braselton J.P. — Mathematica by Example | 203, 204, 207 |
| Lee J.M. — Introduction to Smooth Manifolds | 425 |
| Benson D. — Mathematics and music | 83, 387 |
| Efetov K. — Supersymmetry in disorder and chaos | 20 |
| Polyanin A., Manzhirov A.V. — Handbook of Mathematics for Engineers and Scientists | 264 |
| Hijab O. — Introduction to Calculus and Classical Analysis (Undergraduate Texts in Mathematics) | 189 |
| Lange K. — Optimization | 50 |
| Weickert J. — Visualization and Processing of Tensor Fields: Proceedings of the Dagstuhl Workshop | 200 |
| Bolstad W.M. — Introduction to Bayesian Statistics | 349 |
| Duistermaat J.J., Kolk J.A.C. — Multidimensional Real Analysis II: Integration | 47 |
| Duistermaat J.J., Kolk J.A.C. — Multidimensional Real Analysis I(Cambridge Studies in Advanced Mathematics #86), Vol. 1 | 47 |
| Khuri A.I. — Advanced calculus with applications in statistics | 267 |
| Poeschel J. — Inverse Spectral Theory | 144 |
| Ayres F.J., Mendelson E. — Schaum's Outline of Calculus | 380 |
| Feynman R.P., Leighton R.B., Sands M. — The Feynman lectures on physics (vol.1) | 14—9 |
| Rall D. — Computational Solution to Nonlinear Operator Equations | 97 |
| Sokolnikoff I.S. — Higher Mathematics for Engineers and Physicists | 125—143, 153 |
| Jahne B. — Digital Image Processing | 316 |
| Sokolnikoff I.S. — Mathematics of Physics and Modern Engineering | 219 |
| Guggenheimer H.W. — Applicable Geometry | 53 |
| Page Ch.H. — The Algebra of Electronics | 178 |
| Zeldovich Ya.B., Yaglom I.M. — Higher Math for Beginners | 154 |
| Tapp K. — Matrix Groups for Undergraduates | 94 |
| Weir A.J. — Lebesgue Integration and Measure | 155 |
| Bourbaki N. — Algebra I: Chapters 1-3 | III, § 10, no. 11 |
| Feynman R.P., Leighton R.B., Sands M. — The Feynman lectures on physics (vol.2) | I-14-9 |
| Mercier A. — Analytical and canonical formalism in physics | 69 |
| Kleppner D., Kolenkow R. — An introduction to mechanics | 202 |
| Veltkamp R.C. — Closed Object Boundaries From Scattered Points | 99 |
| Bak J., Newman D.J. — Complex Analysis | 22 |
| Chan Man Fong C.F., De Kee D., Kaloni P.N. — Advanced Mathematics for Engineering and Sciences | 13 |
| Olver P.J., Shakiban C. — Applied linear. algebra | 187, 338 |
| D'Inverno R. — Introducing Einstein's Relatvity | 68 |
| Zeidler E. — Nonlinear Functional Analysis and Its Applications: Part 1: Fixed-Point Theorems | 140 |
| Price J.F. — Lie groups and compact groups | 32 |
| McQuistan R.B. — Scalar and Vector Fields: a Physical Interpretation | 58, 139 |
| Bishop R.L., Crittenden R.J. — Geometry of manifolds | 8 |
| Margenau H., Murphy G.M. — The mathematics of physics and chemistry | 2 |
| Woods F.S., Bailey F.H. — Elementary Calculus | 181 |
| Bjoerck A., Dahlquist G. — Numerical mathematics and scientific computation | 444 |
| Prilepko A.I., Orlovsky D.G., Vasin I.A. — Methods for Solving Inverse Problems in Mathematical Physics | 337 |
| Sutton O.G. — Mathematics in action | 49 |
| Macrobert T.M. — Functions of a complex variable | 31, 70 |
| Rall L.B. — Automatic Differentiation: Techniques and Applications | 9 |
| Riley, Hobson — Mathematical Methods for Physics and Engineering | see "Partial differentiation" |
| David O.Tall — Advanced Mathematical Thinking | 169 |
| Davis H. F., Snider A. D. — Introduction to Vector Analysis | 79 |
| Thomas J.M. — Differential systems | 37 |
| McShane E.J., Botts T.A. — Real Analysis | 118 |
| Woods F.S., Bailey F.H. — A Course in Mathematics. Volume II | II, 198 |
| Thomas J.M. — Differential systems | 37 |
| Steiglitz K. — A Digital Signal Processing Primer: With Applications to Digital Audio and Computer Music | 21 |
| Audichya A. — Mathematics: Marvels and milestones | 153 |
| Hobbie R., Roth B. — Intermediate Physics for Medicine and Biology, | 57 |
| Schutz B.F. — A first course in general relativity | 136 |
| Apostol T.M. — Calculus (Volume 2): Multi-Variable Calculus and Linear Algebra with Applications | 254 |
| Zeidler E. — Oxford User's Guide to Mathematics | 136, 279 |
| Schott J.R. — Matrix Analysis for Statistics | 325 |
| Hassani S. — Mathematical Methods: for Students of Physics and Related Fields | 47—59 |
| Fritzsche K., Grauert H. — From Holomorphic Functions To Complex Manifolds | 15 |
| Spivak M. — Calculus on Manifolds: A Modern Approach to Classical Theorems of Advanced Calculus | 25 |
| Woods F.S. — Advanced Calculus | 66 |
| Ivanov O.A. — Easy as Pi?: An Introduction to Higher Mathematics | 108, 141 |
| Nahin P.J. — When Least Is Best: How Mathematicians Discovered Many Clever Ways to Make Things as Small (or as Large) as Possible | 236, 358—359 |
| Feynman R., Leighton R., Sands M. — Lectures on Physics 2 | I-14-9 |
| Canuto C., Tabacco A. — Mathematical analysis | 286, 288 |
| Zorich V.A., Cooke R. — Mathematical analysis II | 70—71 |
| Zorich V. — Mathematical Analysis | 70—71 |
| Osborne G.A. — Differential and integral calculus, with examples and applications | 131 |