| Книга | Страницы для поиска |
| Kadison R.V., Ringrose J.R. — Fundamentals of the theory of operator algebras (vol. 1) Elementary Theory | 180 |
| Ito K. — Encyclopedic Dictionary of Mathematics. Vol. 2 | 29.A |
| Eisenbud D., Harris J. — The Geometry of Schemes | 207 |
| Wedderburn J.H.M. — Lectures on Matrices | 147, 159, 162 |
| Baker A. — Matrix Groups: An Introduction to Lie Group Theory | 100 |
| Rudin W. — Real and Complex Analysis | 355 |
| Douglas R.G. — Banach algebra techniques in operator theory | 42 |
| Hazewinkel M. (ed.) — Handbook of Algebra, Volume 4 | 55 |
| Arveson W. — A Short Course on Spectral Theory | 17 |
| Hogben L. — Handbook of Linear Algebra | 69—2, 69—4 |
| Shafarevich I.R., Kostrikin A.I. (ed.) — Basic Notions of Algebra | 66, 72, 77, 78, 83—86, 88, 90—96, 200, 237 |
| McCleary J. — A user's guide to spectral sequences | 113, 366 |
| Hatcher A. — Algebraic Topology | 173, 222, 428 |
| Thomas A.D. — Zeta-functions | 116 |
| Weyl H. — The Classical Groups: Their Invariants and Representations, Vol. 1 | 80, 87 |
| Hunt B. — Geometry of Some Special Arithmetic Quotients | 16, 29—31, 259, 280 |
| Kline M. — Mathematical Thought from Ancient to Modern Times, Vol. 1 | 1151 |
| Katok S. — Fuchsian Groups | 113see Skew-field |
| Lounesto P., Hitchin N.J. (Ed), Cassels J.W. (Ed) — Clifford Algebras and Spinors | 200, 301 |
| Hirschfeld J., Wheeler W.H. — Forcing, Arithmetic, Division Rings | 191—252 |
| Szekeres P. — A Course in Modern Mathematical Physics: Groups, Hilbert Space and Differential Geometry | 153 |
| Kline M. — Mathematical Thought from Ancient to Modern Times, Vol. 3 | 1151 |
| Ito K. — Encyclopedic Dictionary of Mathematics | 29.A |
| Cohn P.M. — Skew Fields : Theory of General Division Rings (Encyclopedia of Mathematics and its Applications) | 5, 45, 150 |
| Rudin W. — Real and complex analysis | 360 |
| Barton J.J., Nackman L.R. — Scientific and engineering C++ | 476 |
| Borel A. — Linear algebraic groups | 23.7 |
| Kline M. — Mathematical Thought from Ancient to Modern Times, Vol. 2 | 1151 |
| Kadison R.V., Ringrose J.R. — Fundamentals of the Theory of Operator Algebras (vol. 2) Advanced Theory | 180 |
| Tapp K. — Matrix Groups for Undergraduates | 11 |
| Lewis J.D. — CRM Monograph Series, vol.10: A Survey of the Hodge Conjecture | 307 |
| Brocker Th., Dieck T.T. — Representations of Compact Lie Groups | 5 |
| Hovey M., Palmieri J.H., Strickland N.P. — Axiomatic stable homotopy theory | 77 |
| Kirillov A.A. — Elements of the Theory of Representations | 27 |
| Beachy J.A. — Abstract Algebra II | 100 |
| Englert B.G. (Ed) — Quantum Mechanics | 35 |
| Marcus M. — Finite dimensional multilinear algebra. Part I | 160 |
| Artin E., Nesbitt C.J., Thrall R.M. — Rings with Minimum Condition | 76 |
| Fine B., Rosenberger G. — Fundamental Theorem of Algebra | 130 |
| Simmons G.F. — Introduction to topology and modern analysis | 208 |
| Siegel W. — Fields | IIC4 |
| Rosenfeld B. — Geometry of Lie Groups | 4 |
| Conway J.B. — A Course in Functional Analysis | 222 |
| Mac Lane S., Birkhoff G.D. — Algebra | 335 |
| Faith C. — Rings and Things and a Fine Array of Twentieth Century Associative Algebra | 2.0s, 2.7ss |
| Larsen R. — Banach algebras: An Introduction | 35 |
| Eisenbud D., Harris J. — The geometry of schemes (textbook draft) | 207 |
| Kreyszig E. — Introductory functional analysis with applications | 403 |
| Hu S.-T. — Introduction to contemporary mathematics | 121 |
| Thomas A.D. — Zeta functions, introduction to algebraic geometry | 116 |
| Gleason A. — Fundamentals of Abstract Analysis | 131 Ex. 2 |
| Finkbeiner D.T. — Introduction to Matrices and Linear Transformations | 51 |
| Birkhoff G., Mac Lane S. — A Survey of Modern Algebra | 396, 414 |
| Douglas R.G. — Banach algebra techniques in operator theory | 42 |
| Littlewood D.E. — The Skeleton Key of Mathematics | 103 |
| Porteous I.R. — Clifford Algebras and the Classical Groups | 178 |
| Siegel W. — Fields | IIC4 |
| Leeuwen J.V. — Handbook of Theoretical Computer Science: Algorithms and Complexity | 657 |
| Lounesto P. — Clifford algebras and spinors | 200, 301 |
| Leeuwen J. (ed.), Meyer A.R., Nivat M. — Algorithms and Complexity, Volume A | 657 |
| Knarr N. — Translation Planes: Foundations and Construction Principles | 17 |
| Milnor J.W., Stasheff J.D. — Characteristic Classes. (Am-76), Vol. 76 | 47ff |
| Ivanov O.A. — Easy as Pi?: An Introduction to Higher Mathematics | 121 |
| Burgisser P., Clausen M., Shokrollahi M.A. — Algebraic complexity theory | 456, 458, 470—473 |
| Golan J.S. — The Linear Algebra a Beginning Graduate Student Ought to Know (Texts in the Mathematical Sciences) | 45 |
| Kline M. — Mathematical thought from ancient to modern times | 1151 |
| Alexanderson G. — The harmony of the world: 75 years of Mathematics Magazine MPop | 143 |