Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Hirschfeld J., Wheeler W.H. — Forcing, Arithmetic, Division Rings
Hirschfeld J., Wheeler W.H. — Forcing, Arithmetic, Division Rings



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: Forcing, Arithmetic, Division Rings

Àâòîðû: Hirschfeld J., Wheeler W.H.

ßçûê: en

Ðóáðèêà: Ìàòåìàòèêà/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Ãîä èçäàíèÿ: 1975

Êîëè÷åñòâî ñòðàíèö: 266

Äîáàâëåíà â êàòàëîã: 15.08.2008

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
$a_{\Simga}$, $s_T$      31 see
$S_E$      160
$T^f$      89 see finite also
$\forall_n$-extension of a structure      104—107
$\mathcal{E}_{\Sigma}, \mathcal{E}_T$      16—17 see
$\mathcal{F}_T$      96 see finitely also
$\mathcal{G}_{\Sigma}, \mathcal{G}_T$      57 see infinitely also
$\mathcal{L}_{k, \omega}$-equivalence, $\mathcal{L}_{k, \omega}$-substructure, $\mathcal{L}_{k, \omega}$-equivalence, $\mathcal{L}_{\infty, \omega}$-substructure      9
$\mathcal{L}_{k, \omega}$-equivalence, $\mathcal{L}_{k, \omega}$-substructure, $\mathcal{L}_{k, \omega}$-equivalence, $\mathcal{L}_{\infty, \omega}$-substructure, for existentially complete division algebras      215—216
$\mathcal{L}_{k, \omega}$-equivalence, $\mathcal{L}_{k, \omega}$-substructure, $\mathcal{L}_{k, \omega}$-equivalence, $\mathcal{L}_{\infty, \omega}$-substructure, for existentially universal structures      42—43
$\mathcal{L}_{k, \omega}$-equivalence, $\mathcal{L}_{k, \omega}$-substructure, $\mathcal{L}_{k, \omega}$-equivalence, $\mathcal{L}_{\infty, \omega}$-substructure, for regular models of arithmetic      162
$\mathcal{N}_D$      236 see second also
$\mathcal{N}_E$      168 see second also
$\mathcal{P}_{\Simga}$, $\mathcal{P}_T$      72—73 see also
Algebraically closed structures      1—2 13 15 224
Amalgamation of division algebras      196—197
Amalgamation property      50—51
Analytical hierarchy      117—131 184—186 241—252
Approximating chains      76—85
Approximating chains in arithmetic      182—186
Approximating chains in division algebras      244—247 250—252
Approximating chains, $\mathscr{H}$ chain      81—83 121—124 125—126
Approximating chains, $\varepsilon$ chain      83—85 121—124 125—126
Approximating chains, Cherlin chain      77—80
Approximating theories for $T^f$      104—110 124—125
Arithmetic, existentially complete models of      141 146—154 155—189
Arithmetic, existentially complete models of, Biregular models      140 165—170 172—178 179
Arithmetic, existentially complete models of, Existentially universal models      179—181
Arithmetic, existentially complete models of, Finitely generic models      188
Arithmetic, existentially complete models of, Infinitely generic models      179—181
Arithmetic, existentially complete models of, Regular models      6 139 160—165 168—172 180
Arithmetic, existentially complete models of, Simple models      6 139 155—159
Arithmetic, models of, Nonstandard      141
Arithmetic, models of, Standard      141
Arithmetic, second order, $\beta_n$-models      182—186
Arithmetic, second order, Interpretations of      168—169 236—240 241—252
Arithmetic, second order, Models of arithmetical comprehension      173—178
Arithmetic, second order, Structures for      168—186 233—236
Automorphisms of existentially complete division algebras      199—202 218—219
Automorphisms of existentially complete models of arithmetic      158 165
Center of a division ring      194
Centralizer in a division algebra      200—202 207—214 216—217
Characteristic of a division ring      194
Compactness Theorem      10
Complete type      41
Completeness theorem      10
Condition (for finite forcing)      87
Condition (for finite forcing), Complete sequence of conditions      96
d-prime ideals      225
d-radical ideals      227—228
d-radical of an ideal      225—227 228—231
Deduction Theorem      9
Definability in existentially complete structures, existentially defined subsets in arithmetic      160 162—163
Definability in existentially complete structures, of finitely generated division subalgebras      200
Definability in existentially complete structures, of N in existentially complete division algebras      233—235
Definability in existentially complete structures, of N in existentially complete models of arithmetic      151
Definability in existentially complete structures, of transcendental elements      203—204
Degrees of unsolvability      117—131
Degrees of unsolvability of $T^f$      124—125 241
Degrees of unsolvability of $xa(\mathcal{E}_n)$      121—124 125—126 184—186 244—247
Degrees of unsolvability of $xa(\mathcal{H}_n)$      121—124 125—126 184—186 244—247
Diagram of a structure      7
Division algebra      191—252
Division algebra, Existentially complete      195 198—222 240
Division algebra, Existentially complete, Embeddings of an      215—219
Division algebra, Existentially complete, Extensions of an      215—219
Division algebra, Existentially complete, Maximal subfields of an      207—214
Division algebra, Existentially complete, Subfields of an      202—206
Division algebra, Existentially universal      221 242—243
Division algebra, Finitely generated      219—222
Division algebra, Finitely generic      219 248—249
Division algebra, Finitely homogeneous      200 215—216
Division algebra, Infinitely generic      221 243—244
Division ring      193
Division ring, Existentially complete      195
Division ring, Existentially complete of characteristic 0 or p      195 (see division algebra also)
Elementary equivalence      9
Elementary extension      9
Elementary substructure      9
Enumeration Theorem (Kleene)      144
Existential closure (in arithmetic)      139 149 155
Existential completeness of a structure for a theory      17 22—28 31 48—50 59 69—73 77 81 96—98 111—115 121 129—131 132—136 141 146—154 155—189 195 198—222 240
Existential completeness of a structure in a class      16 19—21 59
Existential completeness of a structure in an extension      16 18
Existential type      29—43 65—69 72 112—115 127—128 156—157 161—163
Existential type of elements in a structure      30 39—43 65—69 72 156—157 161—163
Existential type, Defined in a structure      30
Existential type, Defined in a structure, Finite consistency of      33
Existential type, Defined in a structure, Finite satisfiability of      34
Existential type, Maximal existential type      30 39—40 41—43 112—115
Existential type, Realization of      30 155—156 161—163
Existentially universal structure      31 31—43 127—129 132—136 179—181 221 242—243
Forcing companions, Finite forcing companion      89—93 98—103 106—110 124—125 133 188 241 244 248—250
Forcing companions, Infinite forcing companion      70—71 119—124 125—129 131 133 180—181 243—244 248—250
Forcing, Finite forcing in model theory      87—110
Forcing, Finite forcing in model theory, by structures      93
Forcing, in set theory      4 55 86
Forcing, Infinite forcing in model theory      55—75
Forcing, Weak finite forcing      89
Forcing, Weak infinite forcing      71
Formula, $\exists_n$ formula      8
Formula, $\forall_n$ formula      8
Formula, Basic sentence      86
Formula, Defined in a structure      7
Formula, Existential formula      8
Formula, Prenex normal form for a      8
Formula, Primitive formula      3
Formula, Universal formula      8
Formula, Universal-existential formula      8
Formulas for arithmetic, $\Pi_n$ formula      141
Formulas for arithmetic, $\Sigma_n$ formula      141
Formulas for arithmetic, r.e. formula      142
Formulas for arithmetic, recursive formula      142
Generic structure, Finitely generic structure      93—100 101 103 108—110 111—112 132—136 188 219 248—249
Generic structure, Infinitely generic structure      56—64 69—73 79 80 82 84 111—115 131 132—136 179—181 221 243—244
Groups, Algebraically closed      2 5 16 53 195 222 251—252
Groups, Recursively presented      2 5
Henkin theory      119 120
Joint embedding property      52—54 70—71 101—102 125—129 133
Language of a structure      7
Matijasevic's Theorem      144 187 248
Model of a theory      8
Model which completes a theory      99—100 108—110
Model, Generalized elementary classes of models      8
Model, Inductive classes of models      9
Model-companion (of a theory)      3 69—72 100—103 133 134—136
Model-companion (of a theory), nonexistence for division algebras      206
Model-companion (of a theory), of an $\mathcal{N}_0$-categorical theory      115
Model-complete theory      3 45
Model-completeness for classes of structures      50 53 61—64 79—80 132
Model-completeness test for a theory      4 46
Model-completion of a theory      2—3 45 50—51 134—136
Model-consistency for classes of structures      50 53 61—64 79—80 132
Model-consistency for theories      44
Normal expansion of a language      86
Nullstellensatz for commutative fields      15—16 223
Nullstellensatz for division algebras      225—226
Obstructions to elementary extensions      81
Peano arithmetic      187—189
Persistent formula      77
Persistently complete structure      77
Persistently complete structure, $F_n$-persistently complete structures      83
Persistently complete structure, $\mathcal{H}_n$-persistently complete structures      81
Persistently complete structure, $\Sigma$-persistently complete structures      77
Polynomials, noncommutative      223—224
Pregeneric structure      72—75 135—136 150
Recursive functions, partial or total      142
Reduction Theorems for infinite forcing      66
Reduction Theorems for weak infinite forcing      72
Resultants for infinite forcing      65—68 69
Resultants for weak infinite forcing      72 112 114—115
Skew polynomial ring      196 210—213
Skew power series ring      196 210—212
Theory      8
Theory, $T_{\exists}, T_{\forall}, T_{\exists_n}, T_{\forall_n}$      8
Theory, $T_{\pi_2}$      141
Theory, $xa(M)$      9
Theory, $xa(M, \bar{m})$      9
Theory, $xa(\Sigma)$      9
Transcendental elements of a division algebra      199 202—204
Ultrapowers, recursively enumerable      156—157
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2025
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå