|
|
 |
| Результат поиска |
Поиск книг, содержащих: Symmetry group
| Книга | Страницы для поиска | | Anderson P.W. — Basic notions of condensed matter physics | | | Olver P.J. — Equivalence, Invariants and Symmetry | 1, 39, 65 | | Schweizer W. — Numerical quantum dynamics | 78 | | Cvetkovic D., Doob M., Sachs H. — Spectra of graphs. Theory and application | 231 | | Conte R. — Painleve Property: One Century Later | 591, 592, 596, 604, 611 | | Merris R. — Combinatorics | 209 | | Godsil C., Royle G. — Algebraic Graph Theory | 268 | | Devlin K.J. — Language of Mathematics: Making the Invisible Visible | 190, 215 | | Coxeter H.S.M., Moser W.O.J. — Generators and Relations for Discrete Groups | 33, 37, 53, 65 | | Ruelle D. — Thermodynamic Formalism: The Mathematical Structure of Equilibrium Statistical Mechanics | 33 | | James G., Liebeck M.W. — Representations and Characters of Groups | 368 | | Thouless D.J. — Topological quantum numbers in nonrelativistic physics | 7, 13, 57, 92, 95 | | Chaikin P.M., Lubensky T.C. — Principles of condensed matter physics | 39, 133 | | Kadanoff L.P. — Statistical physics | 240 | | Mihaly L., Martin M.C. — Solid state physics. Problems and solutions | 4 | | Keldysh L.V., Il'inskii Y. A. — Electromagnetic Response of Material Media | 163—169, 171, 172, 174, 175, 200, 201, 221, 235 | | Coxeter H.S.M. — Introduction to Geometry | 31, 54—64 | | Barton J.J., Nackman L.R. — Scientific and engineering C++ | 507 | | Horne Clare E. — Geometric Symmetry in Patterns and Tilings | 9 | | Wolf-Gladrow D.A. — Lattice-gas cellular automata and lattice Boltzmann models | 90, 91, 105 | | Zeldovich Ya.B., Yaglom I.M. — Higher Math for Beginners | 524 | | Malle G., Matzat B.H. — Inverse Galois Theory | 31, 62 | | Struwe M., Rappoport M. — Variational Methods: Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems | see “Group action” | | Lopuzanski J. — An introduction to symmetry and supersymmetry in quantum field theory | 113, 128 | | Coxeter H.S.M. — Regular Polytopes | 44, 130—133, 172, 187, 199, 210, 225—227, 253—256 | | O'Raifeartaigh L. — Group Structure of Gauge Theories | 3, 63 | | Desloge E.A. — Classical Mechanics. Volume 1 | 685 — 686 | | Miller W. — Symmetry Groups and Their Applications | 23, 108 | | Arias J.M., Lozano M. — The Hispalensis Lectures On Nuclear Physics, Vol. 2 | 293 | | Avery J. — Creation and Annihilation Operators | 59, 71—95 | | Stahl A. — Physics with tau leptons | 59, 71—95 | | Holmes P., Lumley J.L., Berkooz G. — Turbulence, Coherent Structures, Dynamical Systems and Symmetry | 7, 9, 126—127, 202—203 | | Gilmore R. — Lie Groups, Lie Algebras and Some of Their Applications | vi, 349 | | Conte R. — The Painlevé property: One century later | 591, 592, 596, 604, 611 | | Leverenz H.W. — An introduction to luminescence of solids | 42—44 | | Gross J.L., Tucker T.W. — Topological Graph Theory (Wiley Series in Discrete Mathematics and Optimization) | 276 | | Coxeter H. — Regular polytopes | 44, 130—133, 172, 187, 200, 210, 225—227, 253-256 | | Konopleva N.P., Popov V.N. — Gauge Fields | 1 | | Chaikin P., Lubensky T. — Principles of condensed matter physics | 39, 133 | | Richards P.I. — Manual of Mathematical Physics | 166, 456 | | Cofman J. — Numbers and shapes revisited: More problems for young mathematicians | 92, 259 | | Silhavy M. — The Mechanics and Thermodynamics of Continuous Media | 158 | | van der Meer J.-C. — The Hamiltonian Hopf Bifurcation | 10 | | Richter-Gebert J. — Realization Spaces of Polytopes, Vol. 164 | 1 | | Penrose R., Rindler W. — Spinors and space-time. Spinor and twistor methods in space-time geometry | see also "Individual groups" | | Anderson J.L. — Principles of Relativity Physics | 85, 88 | | Miller W. — Symmetry and Separation of Variables | 2, 205 | | Giles R. — Mathematical foundation of thermodynamics | 124, 151, 155, 164, 226 | | Jablan S., Sazdanovic R. — LinKnot: knot theory by computer | 439 | | Ruelle D. — Elements of Differentiable Dynamics and Bifurcation Theory | 6, 57 | | Lewin L. — Structural properties of polylogarithms | 393, 395 | | Ivanov O.A. — Easy as Pi?: An Introduction to Higher Mathematics | 38, 40, 43 | | Greiner W., Maruhn J. — Nuclear models | 7 | | Senechal M. — Crystalline Symmetries, An informal mathematical introduction | 27 | | Joyner D. — Adventures in group theory: Rubik's cube, Merlin's machine, and other mathematical toys | 156 | | Keith Devlin — Mathematics: The New Golden Age | 107—114 | | Truss J.K. — Foundations of Mathematical Analysis | 173 | | Truss J. — Foundations of mathematical analysis | 173 | | J. K. Truss — Foundations of mathematical analysis MCet | 173 |
|
|